Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-5850
Authors: Felten, Simon
Title: Log smooth deformation theory via Gerstenhaber algebras
Online publication date: 12-Jan-2022
Language: english
Abstract: We construct a k[[Q]]-linear predifferential graded Lie algebra L∙X0/S0 associated to a log smooth and saturated morphism f0:X0→S0 and prove that it controls the log smooth deformation functor. This provides a geometric interpretation of a construction in Chan et al. (Geometry of the Maurer-Cartan equation near degenerate Calabi-Yau varieties, 2019. arXiv:1902.11174) whereof L∙X0/S0 is a purely algebraic version. Our proof crucially relies on studying deformations of the Gerstenhaber algebra of polyvector fields; this method is closely related to recent developments in mirror symmetry.
DDC: 510 Mathematik
510 Mathematics
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 08 Physik, Mathematik u. Informatik
Place: Mainz
DOI: http://doi.org/10.25358/openscience-5850
Version: Published version
Publication type: Zeitschriftenaufsatz
License: CC-BY
Information on rights of use: https://creativecommons.org/licenses/by/4.0/
Journal: Manuscripta mathematica
167
Pages or article number: 1
35
Publisher: Springer
Publisher place: Berlin u.a.
Issue date: 2022
ISSN: 1432-1785
Publisher's URL: https://doi.org/10.1007/s00229-020-01255-6
Appears in collections:JGU-Publikationen

Files in This Item:
File Description SizeFormat 
log_smooth_deformation_theory-20220112113514620.pdf490.84 kBAdobe PDFView/Open