Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-9245
Authors: Moser, Manuel
Voigt, Christiane
Jurkat-Witschas, Tina
Hahn, Valerian
Mioche, Guillaume
Jourdan, Olivier
Dupuy, Régis
Gourbeyre, Christophe
Schwarzenboeck, Alfons
Lucke, Johannes
Boose, Yvonne
Mech, Mario
Borrmann, Stephan
Ehrlich, André
Herber, Andreas
Lüpkes, Christof
Wendisch, Manfred
Title: Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer
Online publication date: 3-Jul-2023
Year of first publication: 2023
Language: english
Abstract: Airborne in situ cloud measurements were carried out over the northern Fram Strait between Greenland and Svalbard in spring 2019 and summer 2020. In total, 811 min of low-level cloud observations were performed during 20 research flights above the sea ice and the open Arctic ocean with the Polar 5 research aircraft of the Alfred Wegener Institute. Here, we combine the comprehensive in situ cloud data to investigate the distributions of particle number concentration N, effective diameter Deff, and cloud water content CWC (liquid and ice) of Arctic clouds below 500 m altitude, measured at latitudes between 76 and 83◦ N. We developed a method to quantitatively derive the occurrence probability of their thermodynamic phase from the combination of microphysical cloud probe and Polar Nephelometer data. Finally, we assess changes in cloud microphysics and cloud phase related to ambient meteorological conditions in spring and summer and address effects of the sea ice and open-ocean surface conditions. We find median N from 0.2 to 51.7 cm−3 and about 2 orders of magnitude higher N for mainly liquid clouds in summer compared to ice and mixed-phase clouds measured in spring. A southerly flow from the sea ice in cold air outbreaks dominates cloud formation processes at temperatures mostly below −10 ◦C in spring, while northerly warm air intrusions favor the formation of liquid clouds at warmer temperatures in summer. Our results show slightly higher N in clouds over the sea ice compared to the open ocean, indicating enhanced cloud formation processes over the sea ice. The median CWC is higher in summer (0.16 gm−3 ) than in spring (0.06 gm−3 ), as this is dominated by the available atmospheric water content and the temperatures at cloud formation level. We find large differences in the particle sizes in spring and summer and an impact of the surface conditions, which modifies the heat and moisture fluxes in the boundary layer. By combining microphysical cloud data with thermodynamic phase information from the Polar Nephelometer, we find mixed-phase clouds to be the dominant thermodynamic cloud phase in spring, with a frequency of occurrence of 61 % over the sea ice and 66 % over the ocean. Pure ice clouds exist almost exclusively over the open ocean in spring, and in summer the cloud particles are most likely in the liquid water state.
DDC: 530 Physik
530 Physics
540 Chemie
540 Chemistry and allied sciences
550 Geowissenschaften
550 Earth sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 09 Chemie, Pharmazie u. Geowissensch.
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-9245
Version: Published version
Publication type: Zeitschriftenaufsatz
Document type specification: Scientific article
License: CC BY
Information on rights of use: https://creativecommons.org/licenses/by/4.0/
Journal: Atmospheric Chemistry and Physics
23.2023
Pages or article number: 7257
7280
acp-23-7257-2023
Publisher: Copernicus GmbH EGU
Publisher place: Katlenburg-Lindau
Issue date: 2023
ISSN: 1680-7324
Publisher DOI: 10.5194/acp-23-7257-2023
Appears in collections:DFG-491381577-G

Files in This Item:
  File Description SizeFormat
Thumbnail
microphysical_and_thermodynam-20230703082201669.pdf7.18 MBAdobe PDFView/Open