Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-9146
Authors: Möhner, Jonas
Scheuren, Maurice
Woronzow, Valentina
Schumann, Sven
Zischler, Hans
Title: RDA coupled with deep sequencing detects somatic SVA-retrotranspositions and mosaicism in the human brain
Online publication date: 2-Jun-2023
Year of first publication: 2023
Language: english
Abstract: Cells of the developing human brain are affected by the progressive acquisition of genetic and epigenetic alterations that have been reported to contribute to somatic mosaicism in the adult brain and are increasingly considered a possible cause of neurogenetic disorders. A recent work uncovered that the copy–paste transposable element (TE) LINE-1 (L1) is mobilized during brain development, and thus mobile non-autonomous TEs like AluY and SINE-VNTR-Alu (SVA) families can use L1 activity in trans, leading to de novo insertions that may influence the variability of neural cells at genetic and epigenetic levels. In contrast to SNPs and when considering substitutional sequence evolution, the presence or absence of TEs at orthologous loci represents highly informative clade markers that provide insights into the lineage relationships between neural cells and how the nervous system evolves in health and disease. SVAs, as the ‘youngest’ class of hominoid-specific retrotransposons preferentially found in gene- and GC-rich regions, are thought to differentially co-regulate nearby genes and exhibit a high mobility in the human germline. Therefore, we determined whether this is reflected in the somatic brain and used a subtractive and kinetic enrichment technique called representational difference analysis (RDA) coupled with deep sequencing to compare different brain regions with respect to de novo SINE-VNTR-Alu insertion patterns. As a result, we detected somatic de novo SVA integrations in all human brain regions analyzed, and the majority of de novo insertions can be attributed to lineages of telencephalon and metencephalon, since most of the examined integrations are unique to different brain regions under scrutiny. The SVA positions were used as presence/absence markers, forming informative sites that allowed us to create a maximum parsimony phylogeny of brain regions. Our results largely recapitulated the generally accepted evo-devo patterns and revealed chromosome-wide rates of de novo SVA reintegration targets and preferences for specific genomic regions, e.g., GC- and TE-rich regions as well as close proximity to genes that tend to fall into neural-specific Gene Ontology pathways. We concluded that de novo SVA insertions occur in the germline and somatic brain cells at similar target regions, suggesting that similar retrotransposition modes are effective in the germline and soma.
DDC: 500 Naturwissenschaften
500 Natural sciences and mathematics
570 Biowissenschaften
570 Life sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 10 Biologie
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-9146
Version: Published version
Publication type: Zeitschriftenaufsatz
Document type specification: Scientific article
License: CC BY
Information on rights of use: https://creativecommons.org/licenses/by/4.0/
Journal: Frontiers in cell and developmental biology
11
Pages or article number: 1201258
Publisher: Frontiers Media
Publisher place: Lausanne
Issue date: 2023
ISSN: 2296-634X
Publisher DOI: 10.3389/fcell.2023.1201258
Appears in collections:DFG-491381577-G

Files in This Item:
  File Description SizeFormat
Thumbnail
rda_coupled_with_deep_sequenc-20230601120118114.pdf2.22 MBAdobe PDFView/Open