Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8869
Authors: Höche, Nils
Walliser, Eric O.
Schöne, Bernd R.
Title: Microstructural mapping of Arctica islandica shells reveals environmental and physiological controls on biomineral size
Online publication date: 2-Mar-2023
Year of first publication: 2021
Language: english
Abstract: The shells of long-lived bivalves record environmental variability in their geochemical signatures and are thus used extensively in marine high-resolution paleoclimate studies. To possibly overcome the limitations of the commonly employed temperature proxy, the δ18Oshell value, which requires knowledge of the seawater δ18O signature and is prone to diagenetic overprint, the shell microstructures and the morphological properties of individual biomineral units (BMUs) recently attracted research interest as an alternative paleoclimate proxy. In shells of A. islandica, one of the most extensively used and best studied sclerochronological archives, the size of the BMUs increases in warmer temperatures under laboratory circumstances. This study assesses whether this relationship persists under natural growth conditions or whether additional environmental and physiological factors control the BMU size and bias temperature reconstructions. For this purpose, shells from the surface waters of NE Iceland and the Baltic Sea, as well as from deeper waters of the North Sea (100 and 243 m) were analyzed by means of SEM. The BMU sizes were measured by means of image processing software. Results demonstrate a strong effect of temperature on the BMU size at NE Iceland and in the North Sea at 100 m depth. At 243 m depth, however, temperature variability was likely too low (1.2°C) to evoke a microstructural change. At the Baltic Sea, the BMUs remained small, possibly due to physiological stress induced by low salinity and/or hypoxia. Thus, the size of BMUs of A. islandica shells only serves as a relative temperature indicator in fully marine habitats, as long as seasonal temperature amplitudes exceed ca. 1°C. Furthermore, BMU size varied through lifetime with the largest units occurring during age seven to nine. This pattern is possibly linked to the shell growth rate or to the amount of metabolic energy invested in shell growth.
DDC: 550 Geowissenschaften
550 Earth sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 09 Chemie, Pharmazie u. Geowissensch.
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-8869
Version: Published version
Publication type: Zeitschriftenaufsatz
License: CC BY
Information on rights of use: https://creativecommons.org/licenses/by/4.0/
Journal: Frontiers in Earth Science
9
Pages or article number: 781305
Publisher: Frontiers Media
Publisher place: Lausanne
Issue date: 2021
ISSN: 2296-6463
Publisher DOI: 10.3389/feart.2021.781305
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
microstructural_mapping_of_ar-20230302104733431.pdf4.34 MBAdobe PDFView/Open