Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8642
Authors: Perumal, Natarajan
Herfurth, Anna
Pfeiffer, Norbert
Manicam, Caroline
Title: Short-term omega-3 supplementation modulates novel neurovascular and fatty acid metabolic proteome changes in the retina and ophthalmic artery of mice with targeted Cyp2c44 gene deletion
Online publication date: 25-Jan-2023
Year of first publication: 2022
Language: english
Abstract: Cytochrome P450 (CYP) gene mutations are a common predisposition associated with glaucoma. Although the molecular mechanisms are largely unknown, omega-3 polyunsaturated fatty acids (ω-3 PUFA) and their CYP-derived bioactive mediators play crucial roles in the ocular system. Here, we elucidated the proteome and cell-signalling alterations attributed to the main human CYP2C gene deficiency using a homologous murine model (Cyp2c44−/−), and unravelled the effects of acute ω-3 PUFA supplementation in two ocular vascular beds comprising the retrobulbar ophthalmic artery (OA) and retina (R). Male Cyp2c44−/− mice (KO) and their floxed littermates (WT) were gavaged daily for 7 days with 0.01 mL/g of ω-3 PUFA composed of menhaden fish oil. Another group in respective strains served as vehicle-treated controls. OA and R were isolated at day 8 post-treatment (n = 9/group) and subjected to mass spectrometry (MS)-based proteomics and in silico bioinformatics analyses. Cyp2c44−/− resulted in significant detrimental proteome changes associated with compromised vascular integrity and degeneration in the OA and R, respectively. However, notable changes in the OA after ω-3 PUFA intake were associated with the maintenance of intercellular junctional and endothelial cell functions, as well as activation of the fatty acid metabolic pathway in the KO mice. Conversely, ω-3 PUFA supplementation profoundly influenced the regulation of a large majority of retinal proteins involved in the preservation of neuronal and phototransduction activities in WT mice, namely synaptophysin, phosducin and guanylate cyclase-1, while significantly abrogating degenerative processes in the KO mice via the regulation of, namely, synaptotagmin-1 and beta-crystallin B2. In gist, this study demonstrated that dietary supplementation with ω-3 PUFA for a short period of seven days regulated specific neuro-vasculoprotective mechanisms to preserve the functionality of the OA and R in the absence of Cyp2c44. The potential adjunct use of ω-3 PUFA for glaucoma therapy needs further investigation.
DDC: 610 Medizin
610 Medical sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 04 Medizin
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-8642
Version: Published version
Publication type: Zeitschriftenaufsatz
Document type specification: Scientific article
License: CC BY
Information on rights of use: https://creativecommons.org/licenses/by/4.0/
Journal: Cells
11
21
Pages or article number: 3494
Publisher: MDPI
Publisher place: Basel
Issue date: 2022
ISSN: 2073-4409
Publisher DOI: 10.3390/cells11213494
Appears in collections:DFG-491381577-G

Files in This Item:
  File Description SizeFormat
Thumbnail
shortterm_omega3_supplementat-20230124121226770.pdf4.38 MBAdobe PDFView/Open