Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8438
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKöppel, Marius-
dc.contributor.authorSegner, Alexander-
dc.contributor.authorWagener, Martin-
dc.contributor.authorPensel, Lukas-
dc.contributor.authorKarwath, Andreas-
dc.contributor.authorSchmitt, Christian-
dc.contributor.authorKramer, Stefan-
dc.date.accessioned2022-11-30T09:58:46Z-
dc.date.available2022-11-30T09:58:46Z-
dc.date.issued2022-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8454-
dc.description.abstractIn the extensive search for new physics, the precise measurement of the Higgs boson continues to play an important role. To this end, machine learning techniques have been recently applied to processes like the Higgs production via vector-boson fusion. In this paper, we propose to use algorithms for learning to rank, i.e., to rank events into a sorting order, first signal, then background, instead of algorithms for the classification into two classes, for this task. The fact that training is then performed on pairwise comparisons of signal and background events can effectively increase the amount of training data due to the quadratic number of possible combinations. This makes it robust to unbalanced data set scenarios and can improve the overall performance compared to pointwise models like the state-of-the-art boosted decision tree approach. In this work we compare our pairwise neural network algorithm, which is a combination of a convolutional neural network and the DirectRanker, with convolutional neural networks, multilayer perceptrons or boosted decision trees, which are commonly used algorithms in multiple Higgs production channels. Furthermore, we use so-called transfer learning techniques to improve overall performance on different data types.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577de
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleLearning to rank Higgs boson candidatesen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-8438-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleScientific reportsde
jgu.journal.volume12de
jgu.pages.alternative13094de
jgu.publisher.year2022-
jgu.publisher.nameSpringer Naturede
jgu.publisher.placeLondonde
jgu.publisher.issn2045-2322de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1038/s41598-022-10383-wde
jgu.organisation.rorhttps://ror.org/023b0x485-
jgu.subject.dfgNaturwissenschaftende
Appears in collections:DFG-491381577-G

Files in This Item:
  File Description SizeFormat
Thumbnail
learning_to_rank_higgs_boson_-20221129142953611.pdf1.17 MBAdobe PDFView/Open