Learning to rank Higgs boson candidates

dc.contributor.authorKöppel, Marius
dc.contributor.authorSegner, Alexander
dc.contributor.authorWagener, Martin
dc.contributor.authorPensel, Lukas
dc.contributor.authorKarwath, Andreas
dc.contributor.authorSchmitt, Christian
dc.contributor.authorKramer, Stefan
dc.date.accessioned2022-11-30T09:58:46Z
dc.date.available2022-11-30T09:58:46Z
dc.date.issued2022
dc.description.abstractIn the extensive search for new physics, the precise measurement of the Higgs boson continues to play an important role. To this end, machine learning techniques have been recently applied to processes like the Higgs production via vector-boson fusion. In this paper, we propose to use algorithms for learning to rank, i.e., to rank events into a sorting order, first signal, then background, instead of algorithms for the classification into two classes, for this task. The fact that training is then performed on pairwise comparisons of signal and background events can effectively increase the amount of training data due to the quadratic number of possible combinations. This makes it robust to unbalanced data set scenarios and can improve the overall performance compared to pointwise models like the state-of-the-art boosted decision tree approach. In this work we compare our pairwise neural network algorithm, which is a combination of a convolutional neural network and the DirectRanker, with convolutional neural networks, multilayer perceptrons or boosted decision trees, which are commonly used algorithms in multiple Higgs production channels. Furthermore, we use so-called transfer learning techniques to improve overall performance on different data types.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577de
dc.identifier.doihttp://doi.org/10.25358/openscience-8438
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8454
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleLearning to rank Higgs boson candidatesen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleScientific reportsde
jgu.journal.volume12de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative13094de
jgu.publisher.doi10.1038/s41598-022-10383-wde
jgu.publisher.issn2045-2322de
jgu.publisher.nameSpringer Naturede
jgu.publisher.placeLondonde
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530de
jgu.subject.dfgNaturwissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
learning_to_rank_higgs_boson_-20221129142953611.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections