Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
Autoren: Jimenez-Cavero, Pilar
Gueckstock, Oliver
Nádvorník, Lukáš
Lucas, Irene
Seifert, Tom S.
Wolf, Martin
Rouzegar, Reza
Brouwer, Piet W.
Becker, Sven
Jakob, Gerhard
Kläui, Mathias
Guo, Chenyang
Wan, Caihua
Han, Xiufeng
Jin, Zuanming
Zhao, Hui
Wu, Di
Morellón, Luis
Kampfrath, Tobias
Titel: Transition of laser-induced terahertz spin currents from torque- to conduction-electron-mediated transport
Online-Publikationsdatum: 1-Aug-2022
Erscheinungsdatum: 2022
Sprache des Dokuments: Englisch
Zusammenfassung/Abstract: Spin transport is crucial for future spintronic devices operating at bandwidths up to the terahertz range. In F|N thin-film stacks made of a ferromagnetic/ferrimagnetic layer F and a normal-metal layer N, spin transport is mediated by (1) spin-polarized conduction electrons and/or (2) torque between electron spins. To identify a crossover from (1) to (2), we study laser-driven spin currents in F|Pt stacks where F consists of model materials with different degrees of electrical conductivity. For the magnetic insulators yttrium iron garnet, gadolinium iron garnet (GIG) and γ -Fe2O3, identical dynamics is observed. It arises from the terahertz interfacial spin Seebeck effect (SSE), is fully determined by the relaxation of the electrons in the metal layer, and provides a rough estimate of the spin-mixing conductance of the GIG/Pt and γ -Fe2O3/Pt interfaces. Remarkably, in the half-metallic ferrimagnet Fe3O4 (magnetite), our measurements reveal two spin-current components with opposite direction. The slower, positive component exhibits SSE dynamics and is assigned to torque-type magnon excitation of the A- and B-spin sublattices of Fe3O4. The faster, negative component arises from the pyrospintronic effect and can consistently be assigned to ultrafast demagnetization of minority-spin hopping electrons. This observation supports the magneto-electronic model of Fe3O4. In general, our results provide a route to the contact-free separation of torque- and conduction-electron-mediated spin currents.
DDC-Sachgruppe: 530 Physik
530 Physics
Veröffentlichende Institution: Johannes Gutenberg-Universität Mainz
Organisationseinheit: FB 08 Physik, Mathematik u. Informatik
Veröffentlichungsort: Mainz
Version: Published version
Publikationstyp: Zeitschriftenaufsatz
Weitere Angaben zur Dokumentart: Scientific article
Nutzungsrechte: CC BY
Informationen zu den Nutzungsrechten:
Zeitschrift: Physical review : B
Seitenzahl oder Artikelnummer: 184408
Verlag: American Physical Society
Verlagsort: Ridge, NY
Erscheinungsdatum: 2022
ISSN: 2469-9950
DOI der Originalveröffentlichung: 10.1103/PhysRevB.105.184408
Enthalten in den Sammlungen:JGU-Publikationen

Dateien zu dieser Ressource:
  Datei Beschreibung GrößeFormat
transition_of_laserinduced_te-20220726145349747.pdf894.41 kBAdobe PDFÖffnen/Anzeigen