Transition of laser-induced terahertz spin currents from torque- to conduction-electron-mediated transport

dc.contributor.authorJimenez-Cavero, Pilar
dc.contributor.authorGueckstock, Oliver
dc.contributor.authorNádvorník, Lukáš
dc.contributor.authorLucas, Irene
dc.contributor.authorSeifert, Tom S.
dc.contributor.authorWolf, Martin
dc.contributor.authorRouzegar, Reza
dc.contributor.authorBrouwer, Piet W.
dc.contributor.authorBecker, Sven
dc.contributor.authorJakob, Gerhard
dc.contributor.authorKläui, Mathias
dc.contributor.authorGuo, Chenyang
dc.contributor.authorWan, Caihua
dc.contributor.authorHan, Xiufeng
dc.contributor.authorJin, Zuanming
dc.contributor.authorZhao, Hui
dc.contributor.authorWu, Di
dc.contributor.authorMorellón, Luis
dc.contributor.authorKampfrath, Tobias
dc.date.accessioned2022-08-01T09:06:30Z
dc.date.available2022-08-01T09:06:30Z
dc.date.issued2022
dc.description.abstractSpin transport is crucial for future spintronic devices operating at bandwidths up to the terahertz range. In F|N thin-film stacks made of a ferromagnetic/ferrimagnetic layer F and a normal-metal layer N, spin transport is mediated by (1) spin-polarized conduction electrons and/or (2) torque between electron spins. To identify a crossover from (1) to (2), we study laser-driven spin currents in F|Pt stacks where F consists of model materials with different degrees of electrical conductivity. For the magnetic insulators yttrium iron garnet, gadolinium iron garnet (GIG) and γ -Fe2O3, identical dynamics is observed. It arises from the terahertz interfacial spin Seebeck effect (SSE), is fully determined by the relaxation of the electrons in the metal layer, and provides a rough estimate of the spin-mixing conductance of the GIG/Pt and γ -Fe2O3/Pt interfaces. Remarkably, in the half-metallic ferrimagnet Fe3O4 (magnetite), our measurements reveal two spin-current components with opposite direction. The slower, positive component exhibits SSE dynamics and is assigned to torque-type magnon excitation of the A- and B-spin sublattices of Fe3O4. The faster, negative component arises from the pyrospintronic effect and can consistently be assigned to ultrafast demagnetization of minority-spin hopping electrons. This observation supports the magneto-electronic model of Fe3O4. In general, our results provide a route to the contact-free separation of torque- and conduction-electron-mediated spin currents.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-7464
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7478
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleTransition of laser-induced terahertz spin currents from torque- to conduction-electron-mediated transporten_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue18de
jgu.journal.titlePhysical review : Bde
jgu.journal.volume105de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative184408de
jgu.publisher.doi10.1103/PhysRevB.105.184408de
jgu.publisher.issn2469-9950de
jgu.publisher.nameAmerican Physical Societyde
jgu.publisher.placeRidge, NYde
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530de
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
transition_of_laserinduced_te-20220726145349747.pdf
Size:
894.41 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: