Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-742
Authors: Metz, Verena V.
Kojro, Elzbieta
Rat, Dorothea
Postina, Rolf
Title: Induction of RAGE shedding by activation of G protein-coupled receptors
Online publication date: 31-Jan-2013
Year of first publication: 2012
Language: english
Abstract: The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes, including diabetic inflammatory conditions and Alzheimers disease. Full-length RAGE, a cell surface-located type I membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form. Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled receptors (GPCRs). We chose three different GPCRs coupled to distinct signaling cascades: the V2 vasopressin receptor (V2R) activating adenylyl cyclase, the oxytocin receptor (OTR) linked to phospholipase Cβ, and the PACAP receptor (subtype PAC1) coupled to adenylyl cyclase, phospholipase Cβ, calcium signaling and MAP kinases. We generated HEK cell lines stably coexpressing an individual GPCR and full-length RAGE and then investigated GPCR ligand-induced activation of RAGE shedding. We found metalloproteinase-mediated RAGE shedding on the cell surface to be inducible via ligand-specific activation of all analyzed GPCRs. By using specific inhibitors we have identified Ca2+ signaling, PKCα/PKCβI, CaMKII, PI3 kinases and MAP kinases to be involved in PAC1 receptor-induced RAGE shedding. We detected an induction of calcium signaling in all our cell lines coexpressing RAGE and different GPCRs after agonist treatment. However, we did not disclose a contribution of adenylyl cyclase in RAGE shedding induction. Furthermore, by using a selective metalloproteinase inhibitor and siRNAmediated knock-down approaches, we show that ADAM10 and/or MMP9 are playing important roles in constitutive and PACAP-induced RAGE shedding. We also found that treatment of mice with PACAP increases the amount of soluble RAGE in the mouse lung. Our findings suggest that pharmacological stimulation of RAGE shedding might open alternative treatment strategies for Alzheimers disease and diabetes-induced inflammation.
DDC: 570 Biowissenschaften
570 Life sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 09 Chemie, Pharmazie u. Geowissensch.
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-742
URN: urn:nbn:de:hebis:77-33238
Version: Published version
Publication type: Zeitschriftenaufsatz
License: CC BY
Information on rights of use: https://creativecommons.org/licenses/by/3.0/
Journal: PLoS one
7
7
Pages or article number: e41823
Publisher: PLoS
Publisher place: Lawrence, Kan.
Issue date: 2012
ISSN: 1932-6203
Publisher URL: http://dx.doi.org/10.1371/journal.pone.0041823
Publisher DOI: 10.1371/journal.pone.0041823
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
3323.pdf1.23 MBAdobe PDFView/Open