Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-7280
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJavanpeykar, Ariyan-
dc.date.accessioned2022-07-04T07:45:14Z-
dc.date.available2022-07-04T07:45:14Z-
dc.date.issued2021-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7294-
dc.description.abstractWe show that if the automorphism group of a projective variety is torsion, then it is finite. Motivated by Lang’s conjecture on rational points of hyperbolic varieties, we use this to prove that a projective variety with only finitely many rational points has only finitely many automorphisms. Moreover, we investigate to what extent finiteness of S-integral points on a variety over a number field persists over finitely generated fields. To this end, we introduce the class of mildly bounded varieties and prove a general criterion for proving this persistence.en_GB
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleArithmetic hyperbolicity: automorphisms and persistenceen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-7280-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleMathematische Annalende
jgu.journal.volume381de
jgu.pages.start439de
jgu.pages.end457de
jgu.publisher.year2021-
jgu.publisher.nameSpringerde
jgu.publisher.placeBerlin u.a.de
jgu.publisher.issn1432-1807de
jgu.organisation.placeMainz-
jgu.subject.ddccode510de
jgu.publisher.doi10.1007/s00208-021-02155-0de
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
arithmetic_hyperbolicity__aut-20220701124940732.pdf373.79 kBAdobe PDFView/Open