Arithmetic hyperbolicity: automorphisms and persistence

dc.contributor.authorJavanpeykar, Ariyan
dc.date.accessioned2022-07-04T07:45:14Z
dc.date.available2022-07-04T07:45:14Z
dc.date.issued2021
dc.description.abstractWe show that if the automorphism group of a projective variety is torsion, then it is finite. Motivated by Lang’s conjecture on rational points of hyperbolic varieties, we use this to prove that a projective variety with only finitely many rational points has only finitely many automorphisms. Moreover, we investigate to what extent finiteness of S-integral points on a variety over a number field persists over finitely generated fields. To this end, we introduce the class of mildly bounded varieties and prove a general criterion for proving this persistence.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-7280
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7294
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleArithmetic hyperbolicity: automorphisms and persistenceen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleMathematische Annalende
jgu.journal.volume381de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end457de
jgu.pages.start439de
jgu.publisher.doi10.1007/s00208-021-02155-0de
jgu.publisher.issn1432-1807de
jgu.publisher.nameSpringerde
jgu.publisher.placeBerlin u.a.de
jgu.publisher.year2021
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arithmetic_hyperbolicity__aut-20220701124940732.pdf
Size:
373.79 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: