Arithmetic hyperbolicity: automorphisms and persistence
dc.contributor.author | Javanpeykar, Ariyan | |
dc.date.accessioned | 2022-07-04T07:45:14Z | |
dc.date.available | 2022-07-04T07:45:14Z | |
dc.date.issued | 2021 | |
dc.description.abstract | We show that if the automorphism group of a projective variety is torsion, then it is finite. Motivated by Lang’s conjecture on rational points of hyperbolic varieties, we use this to prove that a projective variety with only finitely many rational points has only finitely many automorphisms. Moreover, we investigate to what extent finiteness of S-integral points on a variety over a number field persists over finitely generated fields. To this end, we introduce the class of mildly bounded varieties and prove a general criterion for proving this persistence. | en_GB |
dc.identifier.doi | http://doi.org/10.25358/openscience-7280 | |
dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/7294 | |
dc.language.iso | eng | de |
dc.rights | CC-BY-4.0 | * |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.ddc | 510 Mathematik | de_DE |
dc.subject.ddc | 510 Mathematics | en_GB |
dc.title | Arithmetic hyperbolicity: automorphisms and persistence | en_GB |
dc.type | Zeitschriftenaufsatz | de |
jgu.journal.title | Mathematische Annalen | de |
jgu.journal.volume | 381 | de |
jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | de |
jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
jgu.organisation.number | 7940 | |
jgu.organisation.place | Mainz | |
jgu.organisation.ror | https://ror.org/023b0x485 | |
jgu.pages.end | 457 | de |
jgu.pages.start | 439 | de |
jgu.publisher.doi | 10.1007/s00208-021-02155-0 | de |
jgu.publisher.issn | 1432-1807 | de |
jgu.publisher.name | Springer | de |
jgu.publisher.place | Berlin u.a. | de |
jgu.publisher.year | 2021 | |
jgu.rights.accessrights | openAccess | |
jgu.subject.ddccode | 510 | de |
jgu.type.dinitype | Article | en_GB |
jgu.type.resource | Text | de |
jgu.type.version | Published version | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- arithmetic_hyperbolicity__aut-20220701124940732.pdf
- Size:
- 373.79 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 3.57 KB
- Format:
- Item-specific license agreed upon to submission
- Description: