Please use this identifier to cite or link to this item:
Authors: Miltenberger, Annette K.
Field, Paul R.
Title: Sensitivity of mixed-phase moderately deep convective clouds to parameterizations of ice formation : an ensemble perspective
Online publication date: 7-Dec-2021
Year of first publication: 2021
Language: english
Abstract: The formation of ice in clouds is an important processes in mixed-phase and ice-phase clouds. Yet, the representation of ice formation in numerical models is highly uncertain. In the last decade, several new parameterizations for heterogeneous freezing have been proposed. However, it is currently unclear what the effect of choosing one parameterization over another is in the context of numerical weather prediction. We conducted high-resolution simulations (Δx=250 m) of moderately deep convective clouds (cloud top ∼−18 ∘C) over the southwestern United Kingdom using several formulations of ice formation and compared the resulting changes in cloud field properties to the spread of an initial condition ensemble for the same case. The strongest impact of altering the ice formation representation is found in the hydrometeor number concentration and mass mixing ratio profiles. While changes in accumulated precipitation are around 10 %, high precipitation rates (95th percentile) vary by 20 %. Using different ice formation representations changes the outgoing short-wave radiation by about 2.9 W m−2 averaged over daylight hours. The choice of a particular representation for ice formation always has a smaller impact then omitting heterogeneous ice formation completely. Excluding the representation of the Hallett–Mossop process or altering the heterogeneous freezing parameterization has an impact of similar magnitude on most cloud macro- and microphysical variables with the exception of the frozen hydrometeor mass mixing ratios and number concentrations. A comparison to the spread of cloud properties in a 10-member high-resolution initial condition ensemble shows that the sensitivity of hydrometeor profiles to the formulation of ice formation processes is larger than sensitivity to initial conditions. In particular, excluding the Hallett–Mossop representation results in profiles clearly different from any in the ensemble. In contrast, the ensemble spread clearly exceeds the changes introduced by using different ice formation representations in accumulated precipitation, precipitation rates, condensed water path, cloud fraction, and outgoing radiation fluxes.
DDC: 530 Physik
530 Physics
550 Geowissenschaften
550 Earth sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 08 Physik, Mathematik u. Informatik
Place: Mainz
Version: Published version
Publication type: Zeitschriftenaufsatz
License: CC BY
Information on rights of use:
Journal: Atmospheric chemistry and physics
Pages or article number: 3627
Publisher: EGU
Publisher place: Katlenburg-Lindau
Issue date: 2021
ISSN: 1680-7324
Publisher URL:
Publisher DOI: 10.5194/acp-21-3627-2021
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
miltenberger_annette_k.-copernicus-_se-20211203112136450.pdf2.9 MBAdobe PDFView/Open