Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-3718
Authors: Hollborn, Henning
Title: L-2-Kohomologie von Calabi-Yau-Familien über Kurven
Online publication date: 12-Mar-2014
Language: german
Abstract: Ist $f: X \\to S$ eine glatte Familie von Calabi-Yau-Mannigfaltigkeiten der Dimension $m$ über einer quasiprojektiven Kurve, so trägt nach einem Resultat von Zucker die erste $L^2$-Kohomologiegruppe $H^1_{(2)}(S, R^m f_* \\mathbb{C}_X)$ eine reine Hodgestruktur vom Gewicht $m+1$. In dieser Arbeit berechnen wir die Hodgezahlen solcher Hodgestrukturen für $m= 1, 2, 3$ und verallgemeinern dabei Formeln aus einem Artikel von del Angel, Müller-Stach, van Straten und Zuo auf den Fall, in dem die lokalen Monodromiematrizen bei Unendlich nicht unipotent, sondern echt quasi-unipotent sind. Wir verwenden dazu den $L^2$-Higgs-Komplex nach Jost, Yang und Zuo. Für Familien von Kurven führt dies auf eine bereits bekannte Formel von Cox und Zucker. Schließlich wenden wir die Ergebnisse im Fall $m=3$ auf 14 Familien von Calabi-Yau-Mannigfaltigkeiten an, die eine Rolle in der Spiegelsymmetrie spielen, sowie auf eine von Rohde konstruierte Familie ohne Punkte mit maximal unipotenter Monodromie.
We consider a smooth family $f: X \\to S$ of Calabi-Yau $m$-folds over a quasi-projective curve. In this situation, a result due to Zucker states that the first $L^2$-cohomology group $H^1_{(2)}(S, R^m f_* \\mathbb{C}_X)$ carries a pure Hodge structure of weight $m+1$. The aim of this thesis is to compute the Hodge numbers of such Hodge structures in the cases $m=1, 2, 3$. Thereby we generalize formulae of an article by del Angel, Müller-Stach, van Straten and Zuo from the case of unipotent local monodromy matrices around infinity to the quasi-unipotent case. To this end, we use the $L^2$-Higgs complex from the work of Jost, Yang and Zuo. In the case of families of curves, we obtain a formula already known by Cox and Zucker. Finally, we apply the results to 14 families of Calabi-Yau threefolds which play a role in mirror symmetry, and to Rohde's family of Calabi-Yau threefolds without points of maximal unipotent monodromy.
DDC: 510 Mathematik
510 Mathematics
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 08 Physik, Mathematik u. Informatik
Place: Mainz
DOI: http://doi.org/10.25358/openscience-3718
Version: Original work
Publication type: Dissertation
License: in Copyright
Information on rights of use: https://rightsstatements.org/vocab/InC/1.0/
Extent: 56 S.
Appears in collections:JGU-Publikationen

Files in This Item:
File SizeFormat 
3692.pdf611.64 kBAdobe PDFView/Open