Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-195
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaldrati, Lorenzo-
dc.contributor.authorSchneider, Christoph-
dc.contributor.authorNiizeki, T.-
dc.contributor.authorRamos, R.-
dc.contributor.authorCramer, Joel-
dc.contributor.authorRoss, Andrew-
dc.contributor.authorSaitoh, E.-
dc.contributor.authorKläui, Mathias-
dc.date.accessioned2019-08-20T10:30:19Z-
dc.date.available2019-08-20T12:30:19Z-
dc.date.issued2018-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/197-
dc.description.abstractWe report the generation and transport of thermal spin currents in fully epitaxial γ−Fe2O3/NiO(001)/Pt and Fe3O4/NiO(001)/Pt trilayers. A thermal gradient, perpendicular to the plane of the sample, generates a magnonic spin current in the ferrimagnetic maghemite (γ−Fe2O3) and magnetite (Fe3O4) thin films by means of the spin Seebeck effect. The spin current propagates across the epitaxial, antiferromagnetic insulating NiO layer, before being detected in the Pt layer by the inverse spin Hall effect. The transport of the spin signal is studied as a function of the NiO thickness, temperature, and ferrimagnetic material where the spin current is generated. In epitaxial NiO grown on maghemite, the spin Seebeck signal decays exponentially as a function of the NiO thickness, with a spin-diffusion length for thermally generated magnons of λMSDL=1.6±0.2nm (where MSDL is mean spin-diffusion length), largely independent of temperature. We see no enhancement of the spin-current signal as previously reported for certain temperatures and thicknesses of the NiO. In epitaxial NiO grown on magnetite, the temperature-averaged spin-diffusion length is λMSDL=3.8±0.3nm, and we observe an enhancement of the spin signal when the NiO thickness is 0.8 nm, demonstrating that the growth conditions dramatically affect the spin-transport properties of the NiO even for full epitaxial growth. In contrast to theoretical predictions for coherent spin transport, we do not see vastly different spin-diffusion lengths between epitaxial and polycrystalline NiO layers.en_GB
dc.language.isoeng-
dc.rightsInCopyrightde_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/-
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleSpin transport in multilayer systems with fully epitaxial NiO thin filmsen_GB
dc.typeZeitschriftenaufsatzde_DE
dc.identifier.urnurn:nbn:de:hebis:77-publ-591892-
dc.identifier.doihttp://doi.org/10.25358/openscience-195-
jgu.type.dinitypearticle-
jgu.type.versionAccepted versionen_GB
jgu.type.resourceText-
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik-
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität-
jgu.rights.accessrightsopenAccess-
jgu.journal.titlePhysical review : B-
jgu.journal.volume98-
jgu.journal.issue1-
jgu.pages.alternativeArt. 014409-
jgu.publisher.year2018-
jgu.publisher.nameAPS-
jgu.publisher.placeCollege Park, Md.-
jgu.publisher.urihttp://dx.doi.org/10.1103/PhysRevB.98.014409-
jgu.publisher.issn2469-9969-
jgu.publisher.issn1095-3795-
jgu.organisation.placeMainz-
jgu.subject.ddccode530-
opus.date.accessioned2019-08-20T10:30:19Z-
opus.date.modified2019-09-03T08:55:40Z-
opus.date.available2019-08-20T12:30:19-
opus.subject.dfgcode00-000-
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Physikde_DE
opus.identifier.opusid59189-
opus.institute.number0801-
opus.metadataonlyfalse-
opus.type.contenttypeForschungsberichtde_DE
opus.type.contenttypeResearch Reporten_GB
opus.affiliatedBaldrati, Lorenzo-
opus.affiliatedKläui, Mathias-
jgu.publisher.doi10.1103/PhysRevB.98.014409
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
baldrati_lorenzo-spin_transport-20200928111005076.pdf399.6 kBAdobe PDFView/Open