Spin transport in multilayer systems with fully epitaxial NiO thin films

dc.contributor.authorBaldrati, Lorenzo
dc.contributor.authorSchneider, Christoph
dc.contributor.authorNiizeki, T.
dc.contributor.authorRamos, R.
dc.contributor.authorCramer, Joel
dc.contributor.authorRoss, Andrew
dc.contributor.authorSaitoh, E.
dc.contributor.authorKläui, Mathias
dc.date.accessioned2019-08-20T10:30:19Z
dc.date.available2019-08-20T12:30:19Z
dc.date.issued2018
dc.description.abstractWe report the generation and transport of thermal spin currents in fully epitaxial γ−Fe2O3/NiO(001)/Pt and Fe3O4/NiO(001)/Pt trilayers. A thermal gradient, perpendicular to the plane of the sample, generates a magnonic spin current in the ferrimagnetic maghemite (γ−Fe2O3) and magnetite (Fe3O4) thin films by means of the spin Seebeck effect. The spin current propagates across the epitaxial, antiferromagnetic insulating NiO layer, before being detected in the Pt layer by the inverse spin Hall effect. The transport of the spin signal is studied as a function of the NiO thickness, temperature, and ferrimagnetic material where the spin current is generated. In epitaxial NiO grown on maghemite, the spin Seebeck signal decays exponentially as a function of the NiO thickness, with a spin-diffusion length for thermally generated magnons of λMSDL=1.6±0.2nm (where MSDL is mean spin-diffusion length), largely independent of temperature. We see no enhancement of the spin-current signal as previously reported for certain temperatures and thicknesses of the NiO. In epitaxial NiO grown on magnetite, the temperature-averaged spin-diffusion length is λMSDL=3.8±0.3nm, and we observe an enhancement of the spin signal when the NiO thickness is 0.8 nm, demonstrating that the growth conditions dramatically affect the spin-transport properties of the NiO even for full epitaxial growth. In contrast to theoretical predictions for coherent spin transport, we do not see vastly different spin-diffusion lengths between epitaxial and polycrystalline NiO layers.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-195
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/197
dc.identifier.urnurn:nbn:de:hebis:77-publ-591892
dc.language.isoeng
dc.rightsInC-1.0de_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleSpin transport in multilayer systems with fully epitaxial NiO thin filmsen_GB
dc.typeZeitschriftenaufsatzde_DE
jgu.journal.issue1
jgu.journal.titlePhysical review : B
jgu.journal.volume98
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik
jgu.organisation.nameJohannes Gutenberg-Universität
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 014409
jgu.publisher.doi10.1103/PhysRevB.98.014409
jgu.publisher.issn2469-9969
jgu.publisher.issn1095-3795
jgu.publisher.nameAPS
jgu.publisher.placeCollege Park, Md.
jgu.publisher.urihttp://dx.doi.org/10.1103/PhysRevB.98.014409
jgu.publisher.year2018
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530
jgu.type.dinitypeArticle
jgu.type.resourceText
jgu.type.versionAccepted versionen_GB
opus.affiliatedBaldrati, Lorenzo
opus.affiliatedKläui, Mathias
opus.date.accessioned2019-08-20T10:30:19Z
opus.date.available2019-08-20T12:30:19
opus.date.modified2019-09-03T08:55:40Z
opus.identifier.opusid59189
opus.institute.number0801
opus.metadataonlyfalse
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Physikde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeForschungsberichtde_DE
opus.type.contenttypeResearch Reporten_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
baldrati_lorenzo-spin_transport-20200928111005076.pdf
Size:
399.6 KB
Format:
Adobe Portable Document Format