Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://doi.org/10.25358/openscience-190
Autoren: Kadas, Dimitrios
Duch, Carsten
Consoulas, Christos
Titel: Postnatal increases in axonal conduction velocity of an identified Drosophila interneuron require fast sodium, L-type calcium and shaker potassium channels
Online-Publikationsdatum: 15-Aug-2019
Erscheinungsdatum: 2019
Sprache des Dokuments: Englisch
Zusammenfassung/Abstract: During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20–60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits.
DDC-Sachgruppe: 570 Biowissenschaften
570 Life sciences
Veröffentlichende Institution: Johannes Gutenberg-Universität Mainz
Organisationseinheit: FB 10 Biologie
Veröffentlichungsort: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-190
URN: urn:nbn:de:hebis:77-publ-591824
Version: Published version
Publikationstyp: Zeitschriftenaufsatz
Nutzungsrechte: CC BY
Informationen zu den Nutzungsrechten: https://creativecommons.org/licenses/by/4.0/
Zeitschrift: eNeuro
6
4
Seitenzahl oder Artikelnummer: Art. 0181
Verlag: Soc.
Verlagsort: Washington, DC
Erscheinungsdatum: 2019
ISSN: 2373-2822
URL der Originalveröffentlichung: http://dx.doi.org/10.1523/ENEURO.0181-19.2019
DOI der Originalveröffentlichung: 10.1523/ENEURO.0181-19.2019
Enthalten in den Sammlungen:JGU-Publikationen

Dateien zu dieser Ressource:
  Datei Beschreibung GrößeFormat
Miniaturbild
59182.pdf5.27 MBAdobe PDFÖffnen/Anzeigen