Postnatal increases in axonal conduction velocity of an identified Drosophila interneuron require fast sodium, L-type calcium and shaker potassium channels

dc.contributor.authorKadas, Dimitrios
dc.contributor.authorDuch, Carsten
dc.contributor.authorConsoulas, Christos
dc.date.accessioned2019-08-15T07:03:53Z
dc.date.available2019-08-15T09:03:53Z
dc.date.issued2019
dc.description.abstractDuring early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20–60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizin
dc.identifier.doihttp://doi.org/10.25358/openscience-190
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/192
dc.identifier.urnurn:nbn:de:hebis:77-publ-591824
dc.language.isoeng
dc.rightsCC-BY-4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.titlePostnatal increases in axonal conduction velocity of an identified Drosophila interneuron require fast sodium, L-type calcium and shaker potassium channelsen_GB
dc.typeZeitschriftenaufsatzde_DE
jgu.journal.issue4
jgu.journal.titleeNeuro
jgu.journal.volume6
jgu.organisation.departmentFB 10 Biologie
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7970
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 0181
jgu.publisher.doi10.1523/ENEURO.0181-19.2019
jgu.publisher.issn2373-2822
jgu.publisher.nameSoc.
jgu.publisher.placeWashington, DC
jgu.publisher.urihttp://dx.doi.org/10.1523/ENEURO.0181-19.2019
jgu.publisher.year2019
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode570
jgu.type.dinitypeArticle
jgu.type.resourceText
jgu.type.versionPublished versionen_GB
opus.affiliatedDuch, Carsten
opus.date.accessioned2019-08-15T07:03:53Z
opus.date.available2019-08-15T09:03:53
opus.date.modified2019-08-15T07:13:17Z
opus.identifier.opusid59182
opus.institute.number1012
opus.metadataonlyfalse
opus.organisation.stringFB 10: Biologie: Institut für Entwicklungsbiologie und Neurobiologiede_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
59182.pdf
Size:
5.15 MB
Format:
Adobe Portable Document Format