Effects of platelet-rich fibrin on in vitro periodontal ligament cell functions

Item type: Item , ZeitschriftenaufsatzAccess status: Open Access ,

Abstract

Background: Periodontitis is a chronic inflammatory disease that leads to tooth loosening and ultimately tooth loss. Regenerative approaches employing bioactive substances aim to restore lost tissues. Platelet-rich fibrin (PRF) is a simple and cost-effective option, but its effects on periodontal ligament (PDL) cells under inflammatory conditions remain unclear. Objectives: This study investigated the stimulating effects of platelet-rich fibrin on molecules crucial for periodontal wound healing and tissue remodelling in periodontal ligament (PDL) cells, under normal and inflammatory conditions mimicked by TNF-α. Methods The stimulating effects of different concentrations of PRF on the gene expression of VEGF, BMP2, COX2, TNF-α, and SPP1 were analysed by real-time PCR and ELISA. In addition, the possible modulating effects of TNF-α, a pro-inflammatory cytokine associated with periodontitis, on PRF-induced effects were studied. Furthermore, cell viability, proliferation, and migration were investigated. Results: A 2–3-fold dose-dependent increase in the expression of all the aforementioned genes by PRF was observed at 24 h and 48 h. Additional incubation with TNF-α did not lead to any significant modulation of PRF-induced expression patterns, indicating that the effects of PRF were not compromised in an inflammatory environment. Functionally, PRF caused a significant 35% increase in cell migration between 24 h and 48 h, which was again not affected by a pro-inflammatory condition. Cell viability and proliferation remained largely unaffected by PRF, irrespective of the presence of TNF-α or not. Conclusions: The results suggest that PRF can promote initial periodontal wound healing even in an inflammatory environment by stimulating the expression of cytokines, growth factors and markers of osteogenic differentiation such as VEGF, BMP2 and SPP1, which are involved in angiogenesis, tissue remodelling, and/or cell migration.

Description

Keywords

Citation

Published in

Biomedicines, 13, 10, MDPI, Basel, 2025, https://doi.org/10.3390/biomedicines13102360

Relationships

Collections

Endorsement

Review

Supplemented By

Referenced By