Modeling biological individuality using machine learning : a study on human gait

dc.contributor.authorHorst, Fabian
dc.contributor.authorSlijepcevic, Djordje
dc.contributor.authorSimak, Marvin
dc.contributor.authorHorsak, Brian
dc.contributor.authorSchöllhorn, Wolfgang Immanuel
dc.contributor.authorZeppelzauer, Matthias
dc.date.accessioned2023-07-25T13:25:34Z
dc.date.available2023-07-25T13:25:34Z
dc.date.issued2023
dc.description.abstractHuman gait is a complex and unique biological process that can offer valuable insights into an individual’s health and well-being. In this work, we leverage a machine learning-based approach to model individual gait signatures and identify factors contributing to inter-individual variability in gait patterns. We provide a comprehensive analysis of gait individuality by (1) demonstrating the uniqueness of gait signatures in a large-scale dataset and (2) highlighting the gait characteristics that are most distinctive to each individual. We utilized the data from three publicly available datasets comprising 5368 bilateral ground reaction force recordings during level overground walking from 671 distinct healthy individuals. Our results show that individuals can be identified with a prediction accuracy of 99.3% by using the bilateral signals of all three ground reaction force components, with only 10 out of 1342 recordings in our test data being misclassified. This indicates that the combination of bilateral ground reaction force signals with all three components provides a more comprehensive and accurate representation of an individual’s gait signature. The highest accuracy was achieved by (linear) Support Vector Machines (99.3%), followed by Random Forests (98.7%), Convolutional Neural Networks (95.8%), and Decision Trees (82.8%). The proposed approach provides a powerful tool to better understand biological individuality and has potential applications in personalized healthcare, clinical diagnosis, and therapeutic interventions.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-9292
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9310
dc.language.isoengde
dc.rightsCC-BY-NC-ND-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.subject.ddc796 Sportde_DE
dc.subject.ddc796 Athletic and outdoor sports and gamesen_GB
dc.titleModeling biological individuality using machine learning : a study on human gaiten_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleComputational and Structural Biotechnology Journalde
jgu.journal.volume21de
jgu.organisation.departmentFB 02 Sozialwiss., Medien u. Sportde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7910
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end3423de
jgu.pages.start3414de
jgu.publisher.doi10.1016/j.csbj.2023.06.009de
jgu.publisher.nameElsevierde
jgu.publisher.placeAmsterdamde
jgu.publisher.year2023
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.subject.ddccode796de
jgu.subject.dfgGeistes- und Sozialwissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
modeling_biological_individua-20230718090723602.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.98 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections