Degree formula for the discriminant divisor of lagrangian fibrations of irreducible symplectic manifolds

dc.contributor.advisorLehn, Manfred
dc.contributor.authorEhrhard, Jonas
dc.date.accessioned2025-09-11T12:41:30Z
dc.date.issued2025
dc.description.abstractLet \(M\) be an irreducible holomorphic symplectic manifold with a Lagrangian fibration \(f: M \to \mathbb P^n\), whose discriminant locus is \(\Delta = \bigcup_i \Delta_i \subset \mathbb P^n\). This thesis defines weights \(w_i \in \mathbb Q\) such that \[ 24 \Biggl(\frac{n! \int_M \sqrt{\hat A}(M)}{d_1 \dotsm d_n}\Biggr)^{\frac 1 n} = \sum_i w_i \deg(\Delta_i), \] where \((d_1, \dotsc, d_n)\) is the polarization type of \(f\). The definition of the \(w_i\) involves the cohomology sheaves of the \(\Omega T\) complex \[ f^* \Omega_{\mathbb P^n} \to \Omega_M \cong T_M \to f^* T_{\mathbb P^n}, \] and this thesis gives an in-depth analysis of those sheaves. Furthermore, the definition involves the choice of a Kähler form \(\omega\) on \(M\), which induces a polarization of type \((d_1, \dotsc, d_n)\) on the smooth fibers of \(f\). To show that the \(w_i\) do not depend on the choice of \(\omega\) is the main undertaking of this thesis. If the characteristic cycle \(\Theta_i\) over \(\Delta_i\) is compact, then one can define the weights as \[ w_i = \frac{\chi(\Theta_i)}{\deg_{\Theta_i}(\omega)}. \] In case of non-compact characteristic cycles one can choose an appropriate compact subcycle \(\overline{\Theta}_i \subset \Theta_i\) to compute \(w_i\) in the same way.en
dc.identifier.doihttps://doi.org/10.25358/openscience-12735
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/12756
dc.identifier.urnurn:nbn:de:hebis:77-ffc8d09f-eeca-4b50-8530-3e1d1da451357
dc.language.isoeng
dc.rightsCC-BY-ND-4.0
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc510 Mathematikde
dc.subject.ddc510 Mathematicsen
dc.titleDegree formula for the discriminant divisor of lagrangian fibrations of irreducible symplectic manifoldsen
dc.typeDissertation
jgu.date.accepted2025-07-18
jgu.description.extent73 Seiten ; Illustrationen
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510
jgu.type.dinitypePhDThesisen_GB
jgu.type.resourceText
jgu.type.versionOriginal work

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
degree_formula_for_the_discri-20250911144130367435.pdf
Size:
439.42 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
5.1 KB
Format:
Item-specific license agreed upon to submission
Description: