Degree formula for the discriminant divisor of lagrangian fibrations of irreducible symplectic manifolds
| dc.contributor.advisor | Lehn, Manfred | |
| dc.contributor.author | Ehrhard, Jonas | |
| dc.date.accessioned | 2025-09-11T12:41:30Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Let \(M\) be an irreducible holomorphic symplectic manifold with a Lagrangian fibration \(f: M \to \mathbb P^n\), whose discriminant locus is \(\Delta = \bigcup_i \Delta_i \subset \mathbb P^n\). This thesis defines weights \(w_i \in \mathbb Q\) such that \[ 24 \Biggl(\frac{n! \int_M \sqrt{\hat A}(M)}{d_1 \dotsm d_n}\Biggr)^{\frac 1 n} = \sum_i w_i \deg(\Delta_i), \] where \((d_1, \dotsc, d_n)\) is the polarization type of \(f\). The definition of the \(w_i\) involves the cohomology sheaves of the \(\Omega T\) complex \[ f^* \Omega_{\mathbb P^n} \to \Omega_M \cong T_M \to f^* T_{\mathbb P^n}, \] and this thesis gives an in-depth analysis of those sheaves. Furthermore, the definition involves the choice of a Kähler form \(\omega\) on \(M\), which induces a polarization of type \((d_1, \dotsc, d_n)\) on the smooth fibers of \(f\). To show that the \(w_i\) do not depend on the choice of \(\omega\) is the main undertaking of this thesis. If the characteristic cycle \(\Theta_i\) over \(\Delta_i\) is compact, then one can define the weights as \[ w_i = \frac{\chi(\Theta_i)}{\deg_{\Theta_i}(\omega)}. \] In case of non-compact characteristic cycles one can choose an appropriate compact subcycle \(\overline{\Theta}_i \subset \Theta_i\) to compute \(w_i\) in the same way. | en |
| dc.identifier.doi | https://doi.org/10.25358/openscience-12735 | |
| dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/12756 | |
| dc.identifier.urn | urn:nbn:de:hebis:77-ffc8d09f-eeca-4b50-8530-3e1d1da451357 | |
| dc.language.iso | eng | |
| dc.rights | CC-BY-ND-4.0 | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nd/4.0/ | |
| dc.subject.ddc | 510 Mathematik | de |
| dc.subject.ddc | 510 Mathematics | en |
| dc.title | Degree formula for the discriminant divisor of lagrangian fibrations of irreducible symplectic manifolds | en |
| dc.type | Dissertation | |
| jgu.date.accepted | 2025-07-18 | |
| jgu.description.extent | 73 Seiten ; Illustrationen | |
| jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | |
| jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
| jgu.organisation.number | 7940 | |
| jgu.organisation.place | Mainz | |
| jgu.organisation.ror | https://ror.org/023b0x485 | |
| jgu.rights.accessrights | openAccess | |
| jgu.subject.ddccode | 510 | |
| jgu.type.dinitype | PhDThesis | en_GB |
| jgu.type.resource | Text | |
| jgu.type.version | Original work |