The cell cycle inhibitor p21CIP1 is essential for irinotecan-induced senescence and plays a decisive role in re-sensitization of temozolomide-resistant glioblastoma cells to irinotecan

dc.contributor.authorSallbach, Jason
dc.contributor.authorWoods, Melanie
dc.contributor.authorRasenberger, Birgit
dc.contributor.authorChristmann , Markus
dc.contributor.authorTomicic , Maja T.
dc.date.accessioned2025-03-12T13:36:50Z
dc.date.available2025-03-12T13:36:50Z
dc.date.issued2024
dc.description.abstractBackground and purpose: Standard of care for glioblastomas includes radio-chemotherapy with the monoalkylating compound temozolomide. Temozolomide induces primarily senescence, inefficiently killing glioblastoma cells. Recurrences are inevitable. Although recurrences presumably arise from cells evading/escaping TMZ-induced senescence, becoming resistant, they are often again treated with TMZ. As an alternative treatment, irinotecan could be used. Our aim was to examine to what extent and conditions the topoisomerase I inhibitor irinotecan induces senescence and to analyze the underlying mechanism. Results: Multiple glioblastoma lines with different genetic signatures for p53, p21CIP1, p16INK4A, p14ARF, and PTEN were used. By means of LN229 glioblastoma clones which escaped from temozolomide-induced senescence, thus, being potentially recurrence-forming, we show that this escape is accompanied by increased p21CIP1 protein levels in temozolomide-unexposed senescence-evading clones and inability of temozolomide to induce p21CIP1. In contrast, irinotecan was still able to induce p21CIP1 and could elevate senescence and cell death. In combination with the senolytic drug BV6, irinotecan-induced senescence was significantly reduced. Differential response clusters were also observed in paired samples of newly diagnosed and recurrent patients’ tumors. This can partially explain a significantly prolonged progression-free time until surgery for recurrence in patients additionally treated with irinotecan after temozolomide consolidation and upon the first onset of recurrence. Conclusions: p21CIP1 is essentially involved in induction and maintenance of irinotecan-induced senescence. Neither p16INK4A, p14ARF, nor PTEN contribute to senescence, if p21CIP1 cannot be induced. Based on the positive results of the irinotecan/BV6 treatment, combatting recurrent glioblastomas by targeting senescence cell antiapoptotic pathways (SCAPs) should be considered.
dc.identifier.doihttps://doi.org/10.25358/openscience-11730
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/11751
dc.language.isoeng
dc.rightsCC-BY-4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 Medizinde
dc.subject.ddc610 Medical sciencesen
dc.titleThe cell cycle inhibitor p21CIP1 is essential for irinotecan-induced senescence and plays a decisive role in re-sensitization of temozolomide-resistant glioblastoma cells to irinotecanen
dc.typeZeitschriftenaufsatz
jgu.journal.titleBiomedicine & pharmacotherapy
jgu.journal.volume181
jgu.organisation.departmentFB 04 Medizin
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative117634
jgu.publisher.doi10.1016/j.biopha.2024.117634
jgu.publisher.eissn1950-6007
jgu.publisher.nameElsevier
jgu.publisher.placeAmsterdam
jgu.publisher.year2024
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610
jgu.subject.dfgLebenswissenschaften
jgu.type.dinitypeArticleen_GB
jgu.type.resourceText
jgu.type.versionPublished version

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
the_cell_cycle_inhibitor_p21c-20250312143651014881.pdf
Size:
8.3 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
5.1 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections