Localized potentials in electrical impedance tomography

dc.contributor.authorGebauer, Bastian
dc.date.accessioned2008-11-19T15:28:08Z
dc.date.available2008-11-19T16:28:08Z
dc.date.issued2008
dc.description.abstractIn this work we study localized electric potentials that have an arbitrarily high energy on some given subset of a domain and low energy on another. We show that such potentials exist for general L-infinity-conductivities (with positive infima) in almost arbitrarily shaped subregions of a domain, as long as these regions are connected to the boundary and a unique continuation principle is satisfied. From this we deduce a simple, but new, theoretical identifiability result for the famous Calderon problem with partial data. We also show how to construct such potentials numerically and use a connection with the factorization method to derive a new non-iterative algorithm for the detection of inclusions in electrical impedance tomography.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-312
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/314
dc.identifier.urnurn:nbn:de:hebis:77-17947
dc.language.isoeng
dc.rightsInC-1.0de_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleLocalized potentials in electrical impedance tomographyen_GB
dc.typeZeitschriftenaufsatzde_DE
jgu.journal.issue2
jgu.journal.titleInverse problems and imaging
jgu.journal.volume2
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end269
jgu.pages.start251
jgu.publisher.issn1930-8337
jgu.publisher.nameAIMS
jgu.publisher.placeSpringfield, Mo.
jgu.publisher.year2008
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510
jgu.type.dinitypeArticle
jgu.type.resourceText
jgu.type.versionPublished versionen_GB
opus.affiliatedGebauer, Bastian
opus.date.accessioned2008-11-19T15:28:08Z
opus.date.available2008-11-19T16:28:08
opus.date.modified2008-11-25T08:45:34Z
opus.identifier.opusid1794
opus.institute.number0804
opus.metadataonlyfalse
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Mathematikde_DE
opus.subject.dfgcode00-000
opus.subject.otherElectrical impedance tomography, Calderon problem, factorization methoden_GB
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1794.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format