Unbiased choice of global clustering parameters for single-molecule localization microscopy

dc.contributor.authorVerzelli, Pietro
dc.contributor.authorNold, Andreas
dc.contributor.authorSun, Chao
dc.contributor.authorHeilemann, Mike
dc.contributor.authorSchuman, Erin M.
dc.contributor.authorTchumatchenko, Tatjana
dc.date.accessioned2023-04-20T08:15:04Z
dc.date.available2023-04-20T08:15:04Z
dc.date.issued2022
dc.description.abstractSingle-molecule localization microscopy resolves objects below the diffraction limit of light via sparse, stochastic detection of target molecules. Single molecules appear as clustered detection events after image reconstruction. However, identification of clusters of localizations is often complicated by the spatial proximity of target molecules and by background noise. Clustering results of existing algorithms often depend on user-generated training data or user-selected parameters, which can lead to unintentional clustering errors. Here we suggest an unbiased algorithm (FINDER) based on adaptive global parameter selection and demonstrate that the algorithm is robust to noise inclusion and target molecule density. We benchmarked FINDER against the most common density based clustering algorithms in test scenarios based on experimental datasets. We show that FINDER can keep the number of false positive inclusions low while also maintaining a low number of false negative detections in densely populated regions.en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)|491381577|Open-Access-Publikationskosten 2022–2024 Universität Mainz - Universitätsmedizin
dc.identifier.doihttp://doi.org/10.25358/openscience-8899
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8915
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleUnbiased choice of global clustering parameters for single-molecule localization microscopyen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleScientific reportsde
jgu.journal.volume12de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative22561de
jgu.publisher.doi10.1038/s41598-022-27074-1de
jgu.publisher.issn2045-2322de
jgu.publisher.nameMacmillan Publishers Limited, part of Springer Naturede
jgu.publisher.placeLondonde
jgu.publisher.urihttps://doi.org/10.1038/s41598-022-27074-1de
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.subject.dfgLebenswissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
unbiased_choice_of_global_clu-20230307133620922.pdf
Size:
3.62 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections