Artificial intelligence in risk prediction and diagnosis of vertebral fractures

dc.contributor.authorNamireddy, Srikar R.
dc.contributor.authorGill, Saran S.
dc.contributor.authorPeerbhai, Amaan
dc.contributor.authorKamath, Abith G.
dc.contributor.authorRamsay, Daniele S. C.
dc.contributor.authorSubbiah Ponniah, Hariharan
dc.contributor.authorSalih, Ahmed
dc.contributor.authorJankovic, Dragan
dc.contributor.authorKalasauskas, Darius
dc.contributor.authorNeuhoff, Jonathan
dc.contributor.authorKramer, Andreas
dc.contributor.authorRusso, Salvatore
dc.contributor.authorThavarajasingam, Santhosh G.
dc.date.accessioned2025-04-14T07:40:25Z
dc.date.available2025-04-14T07:40:25Z
dc.date.issued2024
dc.description.abstractWith the increasing prevalence of vertebral fractures, accurate diagnosis and prognostication are essential. This study assesses the effectiveness of AI in diagnosing and predicting vertebral fractures through a systematic review and meta-analysis. A comprehensive search across major databases selected studies utilizing AI for vertebral fracture diagnosis or prognosis. Out of 14,161 studies initially identified, 79 were included, with 40 undergoing meta-analysis. Diagnostic models were stratified by pathology: non-pathological vertebral fractures, osteoporotic vertebral fractures, and vertebral compression fractures. The primary outcome measure was AUROC. AI showed high accuracy in diagnosing and predicting vertebral fractures: predictive AUROC = 0.82, osteoporotic vertebral fracture diagnosis AUROC = 0.92, non-pathological vertebral fracture diagnosis AUROC = 0.85, and vertebral compression fracture diagnosis AUROC = 0.87, all significant (p < 0.001). Traditional models had the highest median AUROC (0.90) for fracture prediction, while deep learning models excelled in diagnosing all fracture types. High heterogeneity (I² > 99%, p < 0.001) indicated significant variation in model design and performance. AI technologies show considerable promise in improving the diagnosis and prognostication of vertebral fractures, with high accuracy. However, observed heterogeneity and study biases necessitate further research. Future efforts should focus on standardizing AI models and validating them across diverse datasets to ensure clinical utility.en
dc.identifier.doihttps://doi.org/10.25358/openscience-12004
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/12025
dc.language.isoeng
dc.rightsCC-BY-4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 Medizinde
dc.subject.ddc610 Medical sciencesen
dc.titleArtificial intelligence in risk prediction and diagnosis of vertebral fracturesen
dc.typeZeitschriftenaufsatz
jgu.journal.titleScientific Reports
jgu.journal.volume14
jgu.organisation.departmentFB 04 Medizin
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative30560
jgu.publisher.doi10.1038/s41598-024-75628-2
jgu.publisher.issn2045-2322
jgu.publisher.nameSpringer Nature
jgu.publisher.placeLondon
jgu.publisher.year2024
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610
jgu.subject.dfgLebenswissenschaften
jgu.type.contenttypeScientific article
jgu.type.dinitypeArticleen_GB
jgu.type.resourceText
jgu.type.versionPublished version

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
artificial_intelligence_in_ri-2025041409402548451.pdf
Size:
2.58 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
5.1 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections