Noise-based local learning using stochastic magnetic tunnel junctions

dc.contributor.authorKoenders, Kees
dc.contributor.authorSchnitzpan, Leo
dc.contributor.authorKammerbauer, Fabian
dc.contributor.authorShu, Sinan
dc.contributor.authorJakob, Gerhard
dc.contributor.authorKläui, Mathias
dc.contributor.authorMentink, Johan H.
dc.contributor.authorAhmad, Nasir
dc.contributor.authorvan Gerven, Marcel
dc.date.accessioned2025-07-28T09:12:57Z
dc.date.available2025-07-28T09:12:57Z
dc.date.issued2025
dc.description.abstractBrain-inspired learning in physical hardware has enormous potential for rapid learning with minimal energy expenditure. One of the characteristics of biological learning systems is their ability to learn in the presence of various noise sources. Inspired by this observation, we introduce a noise-based learning approach for physical systems implementing multilayer neural networks. Simulation results show that our approach allows for effective learning with a performance approaching that of the conventional backpropagation algorithm, which is effective but has a high energy cost. Using a spintronics hardware implementation, we demonstrate experimentally that learning can be achieved in a small network composed of physical stochastic magnetic tunnel junctions. These results provide a path toward efficient learning in general physical systems that embraces rather than mitigates the noise inherent in physical devices.en
dc.description.sponsorship(European Commission|863155, European Commission|856538, European Commission|101070290)
dc.identifier.doihttps://doi.org/10.25358/openscience-12645
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/12666
dc.language.isoeng
dc.rightsInC-1.0
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc530 Physikde
dc.subject.ddc530 Physicsen
dc.titleNoise-based local learning using stochastic magnetic tunnel junctionsen
dc.typeZeitschriftenaufsatz
elements.depositor.primary-group-descriptorFachbereich Physik, Mathematik und Informatik
elements.object.id288084
elements.object.labels02 Physical Sciences
elements.object.labels09 Engineering
elements.object.labels40 Engineering
elements.object.labels51 Physical sciences
elements.object.typejournal-article
jgu.journal.issue5
jgu.journal.titlePhysical review applied
jgu.journal.volume23
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative054035
jgu.publisher.doi10.1103/PhysRevApplied.23.054035
jgu.publisher.eissn2331-7019
jgu.publisher.issn2331-7019
jgu.publisher.nameAmerican Physical Society
jgu.publisher.placeCollege Park, Md. u.a.
jgu.publisher.year2025
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530
jgu.type.dinitypeArticleen_GB
jgu.type.resourceText
jgu.type.versionPublished version

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
noisebased_local_learning_usi-20250728111257983927.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description:
Published version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
5.1 KB
Format:
Plain Text
Description: