Harnessing orbital-to-spin conversion of interfacial orbital currents for efficient spin-orbit torques

dc.contributor.authorDing, Shilei
dc.contributor.authorRoss, Andrew
dc.contributor.authorGo, Dongwook
dc.contributor.authorBaldrati, Lorenzo
dc.contributor.authorRen, Zengyao
dc.contributor.authorFreimuth, Frank
dc.contributor.authorBecker, Sven
dc.contributor.authorKammerbauer, Fabian
dc.contributor.authorYang, Jinbo
dc.contributor.authorJakob, Gerhard
dc.contributor.authorMokrousov, Yuriy
dc.contributor.authorKläui, Mathias
dc.date.accessioned2020-11-25T10:23:17Z
dc.date.available2020-11-25T10:23:17Z
dc.date.issued2020
dc.description.abstractCurrent-induced spin-orbit torques (SOTs) allow for the efficient electrical manipulation of magnetism in spintronic devices. Engineering the SOT efficiency is a key goal that is pursued by maximizing the active interfacial spin accumulation or modulating the nonequilibrium spin density that builds up through the spin Hall and inverse spin galvanic effects. Regardless of the origin, the fundamental requirement for the generation of the current-induced torques is a net spin accumulation. We report on the large enhancement of the SOT efficiency in thulium iron garnet (TmIG)/Pt by capping with a CuOx layer. Considering the weak spin-orbit coupling (SOC) of CuOx these surprising findings likely result from an orbital current generated at the interface between CuOx and Pt, which is injected into the Pt layer and converted into a spin current by strong SOC. The converted spin current decays across the Pt layer and exerts a "nonlocal" torque on TmIG. This additional torque leads to a maximum colossal enhancement of the SOT efficiency of a factor 16 for 1.5 nm of Pt at room temperature, thus opening a path to increase torques while at the same time offering insights into the underlying physics of orbital transport, which has so far been elusive.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-5385
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5389
dc.language.isoengde
dc.rightsInC-1.0*
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleHarnessing orbital-to-spin conversion of interfacial orbital currents for efficient spin-orbit torquesen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue7de
jgu.journal.titlePhysical review lettersde
jgu.journal.volume125de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 177201de
jgu.publisher.doi10.1103/PhysRevLett.125.177201
jgu.publisher.issn0031-9007de
jgu.publisher.nameAmerican Physical Societyde
jgu.publisher.placeRidge, NYde
jgu.publisher.urihttps://doi.org/10.1103/PhysRevLett.125.177201de
jgu.publisher.year2020
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530de
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionAccepted versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ding_shilei-harnessing_orb-20201123140053493.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: