Relayed hyperpolarization for zero-field nuclear magnetic resonance
dc.contributor.author | Van Dyke, Erik T. | |
dc.contributor.author | Eills, James | |
dc.contributor.author | Picazo-Frutos, Román | |
dc.contributor.author | Sheberstov, Kirill F. | |
dc.contributor.author | Hu, Yinan | |
dc.contributor.author | Budker, Dmitry | |
dc.contributor.author | Barskiy, Danila A. | |
dc.date.accessioned | 2024-02-06T15:38:33Z | |
dc.date.available | 2024-02-06T15:38:33Z | |
dc.date.issued | 2022 | |
dc.date.updated | 2023-10-17T18:56:45Z | |
dc.description.abstract | Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is a rapidly developing form of spectroscopy that provides rich spectroscopic information in the absence of large magnetic fields. However, signal acquisition still requires a mechanism for generating a bulk magnetic moment for detection, and the currently used methods only apply to a limited pool of chemicals or come at prohibitively high cost. We demonstrate that the parahydrogen-based SABRE (signal amplification by reversible exchange)–Relay method can be used as a more general means of generating hyperpolarized analytes for ZULF NMR by observing zero-field J-spectra of [13C]-methanol, [1-13C]-ethanol, and [2-13C]-ethanol in both 13C-isotopically enriched and natural abundance samples. We explore the magnetic field dependence of the SABRE-Relay efficiency and show the existence of a second maximum at 19.0 ± 0.3 mT. Despite presence of water, SABRE-Relay is used to hyperpolarize ethanol extracted from a store-bought sample of vodka (%PH ~ 0.1%). | en_GB |
dc.identifier.doi | http://doi.org/10.25358/openscience-10058 | |
dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/10076 | |
dc.language.iso | eng | de |
dc.rights | CC-BY-NC-4.0 | * |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject.ddc | 530 Physik | de_DE |
dc.subject.ddc | 530 Physics | en_GB |
dc.title | Relayed hyperpolarization for zero-field nuclear magnetic resonance | en_GB |
dc.type | Zeitschriftenaufsatz | de |
elements.object.id | 163925 | |
elements.object.type | journal-article | |
jgu.journal.issue | 29 | de |
jgu.journal.title | Science advances | de |
jgu.journal.volume | 8 | de |
jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | de |
jgu.organisation.department | Helmholtz Institut Mainz | de |
jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
jgu.organisation.number | 7940 | |
jgu.organisation.number | 9050 | |
jgu.organisation.place | Mainz | |
jgu.organisation.ror | https://ror.org/023b0x485 | |
jgu.pages.alternative | eabp9242 | de |
jgu.publisher.doi | 10.1126/sciadv.abp9242 | de |
jgu.publisher.issn | 2375-2548 | de |
jgu.publisher.licence | CC BY-NC | |
jgu.publisher.name | American Association for the Advancement of Science | de |
jgu.publisher.place | Washington, DC u.a. | de |
jgu.publisher.year | 2022 | |
jgu.rights.accessrights | openAccess | |
jgu.subject.ddccode | 530 | de |
jgu.subject.dfg | Naturwissenschaften | de |
jgu.type.contenttype | Scientific article | de |
jgu.type.dinitype | Article | en_GB |
jgu.type.resource | Text | de |
jgu.type.version | Published version | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- relayed_hyperpolarization_for-20231017205646224.pdf
- Size:
- 703.55 KB
- Format:
- Adobe Portable Document Format