Exploiting vitamin D receptor and its ligands to target squamous cell carcinomas of the head and neck

dc.contributor.authorKoll, Laura
dc.contributor.authorGül, Désirée
dc.contributor.authorElnouaem, Manal I.
dc.contributor.authorRaslan, Hanaa
dc.contributor.authorRamadan, Omneya R.
dc.contributor.authorKnauer, Shirley K.
dc.contributor.authorStrieth, Sebastian
dc.contributor.authorHagemann, Jan
dc.contributor.authorStauber, Roland H.
dc.contributor.authorKhamis, Aya
dc.date.accessioned2023-05-26T08:31:15Z
dc.date.available2023-05-26T08:31:15Z
dc.date.issued2023
dc.description.abstractVitamin D (VitD) and its receptor (VDR) have been intensively investigated in many cancers. As knowledge for head and neck cancer (HNC) is limited, we investigated the (pre)clinical and therapeutic relevance of the VDR/VitD-axis. We found that VDR was differentially expressed in HNC tumors, correlating to the patients’ clinical parameters. Poorly differentiated tumors showed high VDR and Ki67 expression, whereas the VDR and Ki67 levels decreased from moderate to well-differentiated tumors. The VitD serum levels were lowest in patients with poorly differentiated cancers (4.1 ± 0.5 ng/mL), increasing from moderate (7.3 ± 4.3 ng/mL) to well-differentiated (13.2 ± 3.4 ng/mL) tumors. Notably, females showed higher VitD insufficiency compared to males, correlating with poor differentiation of the tumor. To mechanistically uncover VDR/VitD’s pathophysiological relevance, we demonstrated that VitD induced VDR nuclear-translocation (VitD < 100 nM) in HNC cells. RNA sequencing and heat map analysis showed that various nuclear receptors were differentially expressed in cisplatin-resistant versus sensitive HNC cells including VDR and the VDR interaction partner retinoic acid receptor (RXR). However, RXR expression was not significantly correlated with the clinical parameters, and cotreatment with its ligand, retinoic acid, did not enhance the killing by cisplatin. Moreover, the Chou–Talalay algorithm uncovered that VitD/cisplatin combinations synergistically killed tumor cells (VitD < 100 nM) and also inhibited the PI3K/Akt/mTOR pathway. Importantly, these findings were confirmed in 3D-tumor-spheroid models mimicking the patients’ tumor microarchitecture. Here, VitD already affected the 3D-tumor-spheroid formation, which was not seen in the 2D-cultures. We conclude that novel VDR/VitD-targeted drug combinations and nuclear receptors should also be intensely explored for HNC. Gender-specific VDR/VitD-effects may be correlated to socioeconomic differences and need to be considered during VitD (supplementation)-therapies.en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)|491381577|Open-Access-Publikationskosten 2022–2024 Universität Mainz - Universitätsmedizin
dc.identifier.doihttp://doi.org/10.25358/openscience-9130
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9147
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleExploiting vitamin D receptor and its ligands to target squamous cell carcinomas of the head and necken_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue5de
jgu.journal.titleInternational journal of molecular sciencesde
jgu.journal.volume24de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative4675de
jgu.publisher.doi10.3390/ijms24054675de
jgu.publisher.issn1422-0067de
jgu.publisher.nameMDPIde
jgu.publisher.placeBaselde
jgu.publisher.year2023
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.subject.dfgNaturwissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
exploiting_vitamin_d_receptor-20230525154215835.pdf
Size:
4.19 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections