Heart atlas for retrospective cardiac dosimetry : a multi-institutional study on interobserver contouring variations and their dosimetric impact

dc.contributor.authorStockinger, Marcus
dc.contributor.authorKarle, Heiko
dc.contributor.authorRennau, Hannes
dc.contributor.authorSebb, Sabine
dc.contributor.authorWolf, Ulrich
dc.contributor.authorRemmele, Julia
dc.contributor.authorBührdel, Sandra
dc.contributor.authorBartkowiak, Detlef
dc.contributor.authorBlettner, Maria
dc.contributor.authorSchmidberger, Heinz
dc.contributor.authorWollschläger, Daniel
dc.date.accessioned2022-08-22T10:27:47Z
dc.date.available2022-08-22T10:27:47Z
dc.date.issued2021
dc.description.abstractPurpose Cardiac effects after breast cancer radiation therapy potentially affect more patients as survival improves. The heart’s heterogeneous radiation exposure and composition of functional structures call for establishing individual relationships between structure dose and specific late effects. However, valid dosimetry requires reliable contouring which is challenging for small volumes based on older, lower-quality computed tomography imaging. We developed a heart atlas for robust heart contouring in retrospective epidemiologic studies. Methods and materials The atlas defined the complete heart and geometric surrogate volumes for six cardiac structures: aortic valve, pulmonary valve, all deeper structures combined, myocardium, left anterior myocardium, and right anterior myocardium. We collected treatment planning records from 16 patients from 4 hospitals including dose calculations for 3D conformal tangential field radiation therapy for left-sided breast cancer. Six observers each contoured all patients. We assessed spatial contouring agreement and corresponding dosimetric variability. Results Contouring agreement for the complete heart was high with a mean Jaccard similarity coefficient (JSC) of 89%, a volume coefficient of variation (CV) of 5.2%, and a mean dose CV of 4.2%. The left (right) anterior myocardium had acceptable agreement with 63% (58%) JSC, 9.8% (11.5%) volume CV, and 11.9% (8.0%) mean dose CV. Dosimetric agreement for the deep structures and aortic valve was good despite higher spatial variation. Low spatial agreement for the pulmonary valve translated to poor dosimetric agreement. Conclusions For the purpose of retrospective dosimetry based on older imaging, geometric surrogate volumes for cardiac organs at risk can yield better contouring agreement than anatomical definitions, but retain limitations for small structures like the pulmonary valve.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-7592
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7606
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleHeart atlas for retrospective cardiac dosimetry : a multi-institutional study on interobserver contouring variations and their dosimetric impacten_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleRadiation oncologyde
jgu.journal.volume16de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative241de
jgu.publisher.doi10.1186/s13014-021-01965-5de
jgu.publisher.issn1748-717Xde
jgu.publisher.nameBioMed Centralde
jgu.publisher.placeLondonde
jgu.publisher.year2021
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
heart_atlas_for_retrospective-20220822122506545.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: