Explaining the unique nature of individual gait patterns with deep learning

dc.contributor.authorHorst, Fabian
dc.contributor.authorLapuschkin, Sebastian
dc.contributor.authorSamek, Wojciech
dc.contributor.authorMüller, Klaus-Robert
dc.contributor.authorSchöllhorn, Wolfgang I.
dc.date.accessioned2019-02-25T08:15:25Z
dc.date.available2019-02-25T09:15:25Z
dc.date.issued2019
dc.description.abstractMachine learning (ML) techniques such as (deep) artificial neural networks (DNN) are solving very successfully a plethora of tasks and provide new predictive models for complex physical, chemical, biological and social systems. However, in most cases this comes with the disadvantage of acting as a black box, rarely providing information about what made them arrive at a particular prediction. This black box aspect of ML techniques can be problematic especially in medical diagnoses, so far hampering a clinical acceptance. The present paper studies the uniqueness of individual gait patterns in clinical biomechanics using DNNs. By attributing portions of the model predictions back to the input variables (ground reaction forces and full-body joint angles), the Layer-Wise Relevance Propagation (LRP) technique reliably demonstrates which variables at what time windows of the gait cycle are most relevant for the characterisation of gait patterns from a certain individual. By measuring the time-resolved contribution of each input variable to the prediction of ML techniques such as DNNs, our method describes the first general framework that enables to understand and interpret non-linear ML methods in (biomechanical) gait analysis and thereby supplies a powerful tool for analysis, diagnosis and treatment of human gait.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizin
dc.identifier.doihttp://doi.org/10.25358/openscience-482
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/484
dc.identifier.urnurn:nbn:de:hebis:77-publ-589723
dc.language.isoeng
dc.rightsCC-BY-4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc796 Sportde_DE
dc.subject.ddc796 Athletic and outdoor sports and gamesen_GB
dc.titleExplaining the unique nature of individual gait patterns with deep learningen_GB
dc.typeZeitschriftenaufsatzde_DE
jgu.journal.titleScientific reports
jgu.journal.volume9
jgu.organisation.departmentFB 02 Sozialwiss., Medien u. Sport
jgu.organisation.nameJohannes Gutenberg-Universität
jgu.organisation.number7910
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 2391
jgu.publisher.doi10.1038/s41598-019-38748-8
jgu.publisher.issn2045-2322
jgu.publisher.nameMacmillan Publishers Limited, part of Springer Nature
jgu.publisher.placeLondon
jgu.publisher.urihttp://dx.doi.org/10.1038/s41598-019-38748-8
jgu.publisher.year2019
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode796
jgu.type.dinitypeArticle
jgu.type.resourceText
jgu.type.versionPublished versionen_GB
opus.affiliatedHorst, Fabian
opus.affiliatedSchöllhorn, Wolfgang
opus.date.accessioned2019-02-25T08:15:25Z
opus.date.available2019-02-25T09:15:25
opus.date.modified2019-04-16T06:52:18Z
opus.identifier.opusid58972
opus.institute.number0208
opus.metadataonlyfalse
opus.organisation.stringFB 02: Sozialwissenschaften, Medien und Sport: Institut für Sportwissenschaftde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
horst_fabian-explaining_the-20200928105722868.pdf
Size:
2.85 MB
Format:
Adobe Portable Document Format