Implementation of a Lagrangian Stochastic Particle Trajectory Model (LaStTraM) to simulate concentration and flux footprints using the microclimate model ENVI-Met

dc.contributor.authorSimon, Helge
dc.contributor.authorHeusinger, Jannik
dc.contributor.authorSinsel, Tim
dc.contributor.authorWeber, Stephan
dc.contributor.authorBruse, Michael
dc.date.accessioned2021-11-15T11:06:59Z
dc.date.available2021-11-15T11:06:59Z
dc.date.issued2021
dc.description.abstractThe number of studies evaluating flux or concentration footprints has grown considerably in recent years. These footprints are vital to understand surface–atmosphere flux measurements, for example by eddy covariance. The newly developed backwards trajectory model LaStTraM (Lagrangian Stochastic Trajectory Model) is a post-processing tool, which uses simulation results of the holistic 3D microclimate model ENVI-met as input. The probability distribution of the particles is calculated using the Lagrangian Stochastic method. Combining LaStTraM with ENVI-met should allow us to simulate flux and concentration footprints in complex urban environments. Applications and evaluations were conducted through a comparison with the commonly used 2D models Kormann Meixner and Flux Footprint Predictions in two different meteorological cases (stable, unstable) and in three different detector heights. LaStTraM is capable of reproducing the results of the commonly used 2D models with high accuracy. In addition to the comparison with common footprint models, studies with a simple heterogeneous and a realistic, more complex model domain are presented. All examples show plausible results, thus demonstrating LaStTraM’s potential for the reliable calculation of footprints in homogeneous and heterogenous areas.en_GB
dc.description.sponsorshipOpen Access-Publizieren Universität Mainz / Universitätsmedizin Mainzde
dc.identifier.doihttp://doi.org/10.25358/openscience-6512
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/6522
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc550 Geowissenschaftende_DE
dc.subject.ddc550 Earth sciencesen_GB
dc.titleImplementation of a Lagrangian Stochastic Particle Trajectory Model (LaStTraM) to simulate concentration and flux footprints using the microclimate model ENVI-Meten_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue8de
jgu.journal.titleAtmospherede
jgu.journal.volume12de
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7950
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative977de
jgu.publisher.doi10.3390/atmos12080977
jgu.publisher.issn2073-4433de
jgu.publisher.nameMDPI AGde
jgu.publisher.placeBasel, Switzerlandde
jgu.publisher.urihttps://doi.org/10.3390/atmos12080977de
jgu.publisher.year2021
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode550de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
simon_helge-implementation-20211115120308724.pdf
Size:
8.67 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: