Artificial intelligence and CT-based 3D statistical modeling to assess transsacral corridors and plan implant positioning

dc.contributor.authorKamer, Lukas
dc.contributor.authorNoser, Hansrudi
dc.contributor.authorArand, Charlotte
dc.contributor.authorHandrich, Kristin
dc.contributor.authorRommens, Pol Maria
dc.contributor.authorWagner, Daniel
dc.date.accessioned2022-09-12T10:41:27Z
dc.date.available2022-09-12T10:41:27Z
dc.date.issued2021
dc.description.abstractTranssacral corridors at levels S1 and S2 represent complex osseous spaces allowing percutaneous fixation of non- or minimally-displaced fragility fractures of the sacrum. To safely place transsacral implants, they must be completely intraosseous. However, standard radiographs and CT do not properly demonstrate the corridor's intricate configuration. Our goal was to facilitate the three-dimensional assessment of transsacral corridors using artificial intelligence and the planning of transsacral implant positioning. In total, 100 pelvic CTs (49 women, mean age: 58.6 ± SD 14.8 years; 51 men, mean age: 60.7 ± SD 13 years) were used to compute a 3D statistical model of the pelvic ring. On the basis of morphologic features (=predictors) and principal components scores (=response), regression learners were interactively trained, validated, and tuned to predict/sample personalized 3D pelvic models. They were matched via thin-plate spline transformation to a series of 20 pelvic CTs with fragility fractures of the sacrum (18 women and 2 men, age: 69–9.5 years, mean age: 78.65 ± SD 8.4 years). These models demonstrated the availability, dimension, cross-section, and symmetry of transsacral corridors S1 and S2, as well as the planned implant position, dimension, axes, and entry and exit points. The complete intraosseous pathway was controlled in CT reconstructions. We succeeded to establish a workflow determining transsacral corridors S1 and S2 using artificial intelligence and 3D statistical modeling.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-7726
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7741
dc.language.isoengde
dc.rightsCC-BY-NC-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleArtificial intelligence and CT-based 3D statistical modeling to assess transsacral corridors and plan implant positioningen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue12de
jgu.journal.titleJournal of orthopaedic researchde
jgu.journal.volume39de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end2692de
jgu.pages.start2681de
jgu.publisher.doi10.1002/jor.25010de
jgu.publisher.issn1554-527Xde
jgu.publisher.nameWileyde
jgu.publisher.placeHoboken, NJ u.a.de
jgu.publisher.year2021
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
artificial_intelligence_and_c-20220905131334267.pdf
Size:
5.24 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: