Implementation of deep learning in liver pathology optimizes diagnosis of benign lesions and adenocarcinoma metastasis

dc.contributor.authorKriegsmann, Mark
dc.contributor.authorKriegsmann, Katharina
dc.contributor.authorSteinbuss, Georg
dc.contributor.authorZgorzelski, Christiane
dc.contributor.authorAlbrecht, Thomas
dc.contributor.authorHeinrich, Stefan
dc.contributor.authorFarkas, Stefan
dc.contributor.authorRoth, Wilfried
dc.contributor.authorDang, Hien
dc.contributor.authorHausen, Anne
dc.contributor.authorGaida, Matthias M.
dc.date.accessioned2024-01-24T10:00:07Z
dc.date.available2024-01-24T10:00:07Z
dc.date.issued2023
dc.description.abstractIntroduction Differentiation of histologically similar structures in the liver, including anatomical structures, benign bile duct lesions, or common types of liver metastases, can be challenging with conventional histological tissue sections alone. Accurate histopathological classification is paramount for the diagnosis and adequate treatment of the disease. Deep learning algorithms have been proposed for objective and consistent assessment of digital histopathological images. Materials and methods In the present study, we trained and evaluated deep learning algorithms based on the EfficientNetV2 and ResNetRS architectures to discriminate between different histopathological classes. For the required dataset, specialized surgical pathologists annotated seven different histological classes, including different non-neoplastic anatomical structures, benign bile duct lesions, and liver metastases from colorectal and pancreatic adenocarcinoma in a large patient cohort. Annotation resulted in a total of 204.159 image patches, followed by discrimination analysis using our deep learning models. Model performance was evaluated on validation and test data using confusion matrices. Results Evaluation of the test set based on tiles and cases revealed overall highly satisfactory prediction capability of our algorithm for the different histological classes, resulting in a tile accuracy of 89% (38 413/43 059) and case accuracy of 94% (198/211). Importantly, the separation of metastasis versus benign lesions was certainly confident on case level, confirming the classification model performed with high diagnostic accuracy. Moreover, the whole curated raw data set is made publically available. Conclusions Deep learning is a promising approach in surgical liver pathology supporting decision making in personalized medicine.en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)|491381577|Open-Access-Publikationskosten 2022–2024 Universität Mainz - Universitätsmedizin
dc.identifier.doihttp://doi.org/10.25358/openscience-9964
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9982
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleImplementation of deep learning in liver pathology optimizes diagnosis of benign lesions and adenocarcinoma metastasisen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue7de
jgu.journal.titleClinical and translational medicinede
jgu.journal.volume13de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativee1299de
jgu.publisher.doi10.1002/ctm2.1299de
jgu.publisher.issn2001-1326de
jgu.publisher.nameWileyde
jgu.publisher.placeHoboken, NJde
jgu.publisher.urihttps://doi.org/10.1002/ctm2.1299de
jgu.publisher.year2023
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.subject.dfgLebenswissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
implementation_of_deep_learni-20240123154450414.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections