Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data

dc.contributor.authorBrüning, Sarah
dc.contributor.authorNiebler, Stefan
dc.contributor.authorTost, Holger
dc.date.accessioned2025-01-30T15:12:36Z
dc.date.available2025-01-30T15:12:36Z
dc.date.issued2024
dc.description.abstractSatellite instruments provide high-temporal-resolution data on a global scale, but extracting 3D information from current instruments remains a challenge. Most observational data are two-dimensional (2D), offering either cloud top information or vertical profiles. We trained a neural network (Res-UNet) to merge high-resolution satellite images from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI) with 2D CloudSat radar reflectivities to generate 3D cloud structures. The Res-UNet extrapolates the 2D reflectivities across the full disk of MSG SEVIRI, enabling a reconstruction of the cloud intensity, height, and shape in three dimensions. The imbalance between cloudy and clear-sky CloudSat profiles results in an overestimation of cloud-free pixels. Our root mean square error (RMSE) accounts for 2.99 dBZ. This corresponds to 6.6 % error on a reflectivity scale between −25 and 20 dBZ. While the model aligns well with CloudSat data, it simplifies multi-level and mesoscaleen_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-11301
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/11322
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleArtificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite dataen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue3de
jgu.journal.titleAtmospheric measurement techniquesde
jgu.journal.volume17de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end978de
jgu.pages.start961de
jgu.publisher.doi10.5194/amt-17-961-2024de
jgu.publisher.issn1867-8548de
jgu.publisher.nameCopernicusde
jgu.publisher.placeKatlenburg-Lindaude
jgu.publisher.year2024
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530de
jgu.subject.dfgNaturwissenschaftende
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
artificial_intelligence_aider-20250130160958734.pdf
Size:
6.41 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections