Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
| dc.contributor.author | Brüning, Sarah | |
| dc.contributor.author | Niebler, Stefan | |
| dc.contributor.author | Tost, Holger | |
| dc.date.accessioned | 2025-01-30T15:12:36Z | |
| dc.date.available | 2025-01-30T15:12:36Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Satellite instruments provide high-temporal-resolution data on a global scale, but extracting 3D information from current instruments remains a challenge. Most observational data are two-dimensional (2D), offering either cloud top information or vertical profiles. We trained a neural network (Res-UNet) to merge high-resolution satellite images from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI) with 2D CloudSat radar reflectivities to generate 3D cloud structures. The Res-UNet extrapolates the 2D reflectivities across the full disk of MSG SEVIRI, enabling a reconstruction of the cloud intensity, height, and shape in three dimensions. The imbalance between cloudy and clear-sky CloudSat profiles results in an overestimation of cloud-free pixels. Our root mean square error (RMSE) accounts for 2.99 dBZ. This corresponds to 6.6 % error on a reflectivity scale between −25 and 20 dBZ. While the model aligns well with CloudSat data, it simplifies multi-level and mesoscale | en_GB |
| dc.identifier.doi | http://doi.org/10.25358/openscience-11301 | |
| dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/11322 | |
| dc.language.iso | eng | de |
| dc.rights | CC-BY-4.0 | * |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject.ddc | 530 Physik | de_DE |
| dc.subject.ddc | 530 Physics | en_GB |
| dc.title | Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data | en_GB |
| dc.type | Zeitschriftenaufsatz | de |
| jgu.journal.issue | 3 | de |
| jgu.journal.title | Atmospheric measurement techniques | de |
| jgu.journal.volume | 17 | de |
| jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | de |
| jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
| jgu.organisation.number | 7940 | |
| jgu.organisation.place | Mainz | |
| jgu.organisation.ror | https://ror.org/023b0x485 | |
| jgu.pages.end | 978 | de |
| jgu.pages.start | 961 | de |
| jgu.publisher.doi | 10.5194/amt-17-961-2024 | de |
| jgu.publisher.issn | 1867-8548 | de |
| jgu.publisher.name | Copernicus | de |
| jgu.publisher.place | Katlenburg-Lindau | de |
| jgu.publisher.year | 2024 | |
| jgu.rights.accessrights | openAccess | |
| jgu.subject.ddccode | 530 | de |
| jgu.subject.dfg | Naturwissenschaften | de |
| jgu.type.dinitype | Article | en_GB |
| jgu.type.resource | Text | de |
| jgu.type.version | Published version | de |