A machine learning approach to quantify the specificity of colour-emotion associations and their cultural differences

dc.contributor.authorJonauskaite, Domicele
dc.contributor.authorWicker, Jörg
dc.contributor.authorMohr, Christine
dc.contributor.authorDael, Nele
dc.contributor.authorHavelka, Jelena
dc.contributor.authorPapadatou-Pastou, Marietta
dc.contributor.authorZhang, Meng
dc.contributor.authorOberfeld-Twistel, Daniel
dc.date.accessioned2019-11-04T10:18:08Z
dc.date.available2019-11-04T11:18:08Z
dc.date.issued2019
dc.description.abstractThe link between colour and emotion and its possible similarity across cultures are questions that have not been fully resolved. Online, 711 participants from China, Germany, Greece and the UK associated 12 colour terms with 20 discrete emotion terms in their native languages. We propose a machine learning approach to quantify (a) the consistency and specificity of colour–emotion associations and (b) the degree to which they are country-specific, on the basis of the accuracy of a statistical classifier in (a) decoding the colour term evaluated on a given trial from the 20 ratings of colour–emotion associations and (b) predicting the country of origin from the 240 individual colour–emotion associations, respectively. The classifier accuracies were significantly above chance level, demonstrating that emotion associations are to some extent colour-specific and that colour–emotion associations are to some extent country-specific. A second measure of country-specificity, the in-group advantage of the colour-decoding accuracy, was detectable but relatively small (6.1%), indicating that colour–emotion associations are both universal and culture-specific. Our results show that machine learning is a promising tool when analysing complex datasets from emotion research.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizin
dc.identifier.doihttp://doi.org/10.25358/openscience-460
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/462
dc.identifier.urnurn:nbn:de:hebis:77-publ-593896
dc.language.isoeng
dc.rightsCC-BY-4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc150 Psychologiede_DE
dc.subject.ddc150 Psychologyen_GB
dc.titleA machine learning approach to quantify the specificity of colour-emotion associations and their cultural differencesen_GB
dc.typeZeitschriftenaufsatzde_DE
jgu.journal.issue9
jgu.journal.titleRoyal Society Open Science
jgu.journal.volume6
jgu.notes.publicOberfeld-Twistel, Daniel veröffentlicht unter: Oberfeld, Danielde_DE
jgu.organisation.departmentFB 02 Sozialwiss., Medien u. Sport
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7910
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 190741
jgu.publisher.doi10.1098/rsos.190741
jgu.publisher.issn2054-5703
jgu.publisher.nameRoyal Soc. Publ.
jgu.publisher.placeLondon
jgu.publisher.urihttp://dx.doi.org/10.1098/rsos.190741
jgu.publisher.year2019
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode150
jgu.type.dinitypeArticle
jgu.type.resourceText
jgu.type.versionPublished versionen_GB
opus.affiliatedOberfeld-Twistel, Daniel
opus.date.accessioned2019-11-04T10:18:08Z
opus.date.available2019-11-04T11:18:08
opus.date.modified2019-12-06T10:46:08Z
opus.identifier.opusid59389
opus.institute.number0204
opus.metadataonlyfalse
opus.organisation.stringFB 02: Sozialwissenschaften, Medien und Sport: Psychologisches Institutde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
59389.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format