Charge transport mechanism in networks of armchair graphene nanoribbons
dc.contributor.author | Richter, Nils | |
dc.contributor.author | Chen, Zongping | |
dc.contributor.author | Tries, Alexander | |
dc.contributor.author | Prechtl, Thorsten | |
dc.contributor.author | Narita, Akimitsu | |
dc.contributor.author | Müllen, Klaus | |
dc.contributor.author | Asadi, Kamal | |
dc.contributor.author | Bonn, Mischa | |
dc.contributor.author | Kläui, Mathias | |
dc.date.accessioned | 2020-10-28T09:41:20Z | |
dc.date.available | 2020-10-28T09:41:20Z | |
dc.date.issued | 2020 | |
dc.description.abstract | In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature that enables novel graphene-based electronics. Despite great progress, reliable and reproducible fabrication of single-ribbon field-effect transistors (FETs) is still a challenge, impeding the understanding of the charge transport. Here, we present reproducible fabrication of armchair GNR-FETs based on networks of nanoribbons and analyze the charge transport mechanism using nine-atom wide and, in particular, five-atom-wide GNRs with large conductivity. We show formation of reliable Ohmic contacts and a yield of functional FETs close to unity by lamination of GNRs to electrodes. Modeling the charge transport in the networks reveals that transport is governed by inter-ribbon hopping mediated by nuclear tunneling, with a hopping length comparable to the physical GNR length. Overcoming the challenge of low-yield single-ribbon transistors by the networks and identifying the corresponding charge transport mechanism is a key step forward for functionalization of GNRs. | en_GB |
dc.identifier.doi | http://doi.org/10.25358/openscience-5142 | |
dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/5146 | |
dc.language.iso | eng | de |
dc.rights | CC-BY-4.0 | * |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.ddc | 530 Physik | de_DE |
dc.subject.ddc | 530 Physics | en_GB |
dc.title | Charge transport mechanism in networks of armchair graphene nanoribbons | en_GB |
dc.type | Zeitschriftenaufsatz | de |
jgu.journal.title | Scientific reports | de |
jgu.journal.volume | 10 | de |
jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | de |
jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
jgu.organisation.number | 7940 | |
jgu.organisation.place | Mainz | |
jgu.organisation.ror | https://ror.org/023b0x485 | |
jgu.pages.alternative | Art. 1988 | de |
jgu.publisher.doi | 10.1038/s41598-020-58660-w | |
jgu.publisher.issn | 2045-2322 | de |
jgu.publisher.name | Macmillan Publishers Limited, part of Springer Nature | de |
jgu.publisher.place | London | de |
jgu.publisher.uri | https://www.doi.org/10.1038/s41598-020-58660-w | de |
jgu.publisher.year | 2020 | |
jgu.rights.accessrights | openAccess | |
jgu.subject.ddccode | 530 | de |
jgu.type.dinitype | Article | en_GB |
jgu.type.resource | Text | de |
jgu.type.version | Published version | de |