Algorithmic differentiation for sensitivity analysis in cloud microphysics

dc.contributor.authorHieronymus, Maicon
dc.contributor.authorBaumgartner, Manuel
dc.contributor.authorMiltenberger, Annette
dc.contributor.authorBrinkmann, André
dc.date.accessioned2022-10-31T07:56:30Z
dc.date.available2022-10-31T07:56:30Z
dc.date.issued2022
dc.description.abstractThe role of clouds for radiative transfer, precipitation formation, and their interaction with atmospheric dynamics depends strongly on cloud microphysics. The parameterization of cloud microphysical processes in weather and climate models is a well-known source of uncertainties. Hence, robust quantification of this uncertainty is mandatory. Sensitivity analysis to date has typically investigated only a few model parameters. We propose algorithmic differentiation (AD) as a tool to detect the magnitude and timing at which a model state variable is sensitive to any of the hundreds of uncertain model parameters in the cloud microphysics parameterization. AD increases the computational cost by roughly a third in our simulations. We explore this methodology as the example of warm conveyor belt trajectories, that is, air parcels rising rapidly from the planetary boundary layer to the upper troposphere in the vicinity of an extratropical cyclone. Based on the information of derivatives with respect to the uncertain parameters, the ten parameters contributing most to uncertainty are selected. These uncertain parameters are mostly related to the representation of hydrometeor diameter and fall velocity, the activation of cloud condensation nuclei, and heterogeneous freezing. We demonstrate the meaningfulness of the AD-estimated sensitivities by comparing the AD results with ensemble simulations spawned at different points along the trajectories, where different parameter settings are used in the various ensemble members. The ranking of the most important parameters from these ensemble simulations is consistent with the results from AD. Thus, AD is a helpful tool for selecting parameters contributing most to cloud microphysics uncertainty.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577de
dc.identifier.doihttp://doi.org/10.25358/openscience-8106
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8121
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc550 Geowissenschaftende_DE
dc.subject.ddc550 Earth sciencesen_GB
dc.titleAlgorithmic differentiation for sensitivity analysis in cloud microphysicsen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue7de
jgu.journal.titleJournal of advances in modeling earth systemsde
jgu.journal.volume14de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativee2021MS002849de
jgu.publisher.doi10.1029/2021MS002849de
jgu.publisher.issn1942-2466de
jgu.publisher.nameJohn Wiley & Sons, Ltdde
jgu.publisher.placeFort Collins, Colo.de
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode550de
jgu.subject.dfgLebenswissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
algorithmic_differentiation_f-20221019134022073.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections