Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations

dc.contributor.authorKučera, Václav
dc.contributor.authorLukáčová-Medvid’ová, Mária
dc.contributor.authorNoelle, Sebastian
dc.contributor.authorSchütz, Jochen
dc.date.accessioned2022-08-03T09:40:12Z
dc.date.available2022-08-03T09:40:12Z
dc.date.issued2022
dc.description.abstractIn this paper we derive and analyse a class of linearly implicit schemes which includes the one of Feistauer and Kučera (J Comput Phys 224:208–221, 2007) as well as the class of RS-IMEX schemes (Schütz and Noelle in J Sci Comp 64:522–540, 2015; Kaiser et al. in J Sci Comput 70:1390–1407, 2017; Bispen et al. in Commun Comput Phys 16:307–347, 2014; Zakerzadeh in ESAIM Math Model Numer Anal 53:893–924, 2019). The implicit part is based on a Jacobian matrix which is evaluated at a reference state. This state can be either the solution at the old time level as in Feistauer and Kučera (2007), or a numerical approximation of the incompressible limit equations as in Zeifang et al. (Commun Comput Phys 27:292–320, 2020), or possibly another state. Subsequently, it is shown that this class of methods is asymptotically preserving under the assumption of a discrete Hilbert expansion. For a one-dimensional setting with some limitations on the reference state, the existence of a discrete Hilbert expansion is shown.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-7480
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7494
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleAsymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equationsen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleNumerische Mathematikde
jgu.journal.volume150de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end103de
jgu.pages.start79de
jgu.publisher.doi10.1007/s00211-021-01240-5de
jgu.publisher.issn0945-3245de
jgu.publisher.nameSpringerde
jgu.publisher.placeBerlin u.a.de
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
asymptotic_properties_of_a_cl-20220729162547501.pdf
Size:
417.04 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: