Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations
dc.contributor.author | Kučera, Václav | |
dc.contributor.author | Lukáčová-Medvid’ová, Mária | |
dc.contributor.author | Noelle, Sebastian | |
dc.contributor.author | Schütz, Jochen | |
dc.date.accessioned | 2022-08-03T09:40:12Z | |
dc.date.available | 2022-08-03T09:40:12Z | |
dc.date.issued | 2022 | |
dc.description.abstract | In this paper we derive and analyse a class of linearly implicit schemes which includes the one of Feistauer and Kučera (J Comput Phys 224:208–221, 2007) as well as the class of RS-IMEX schemes (Schütz and Noelle in J Sci Comp 64:522–540, 2015; Kaiser et al. in J Sci Comput 70:1390–1407, 2017; Bispen et al. in Commun Comput Phys 16:307–347, 2014; Zakerzadeh in ESAIM Math Model Numer Anal 53:893–924, 2019). The implicit part is based on a Jacobian matrix which is evaluated at a reference state. This state can be either the solution at the old time level as in Feistauer and Kučera (2007), or a numerical approximation of the incompressible limit equations as in Zeifang et al. (Commun Comput Phys 27:292–320, 2020), or possibly another state. Subsequently, it is shown that this class of methods is asymptotically preserving under the assumption of a discrete Hilbert expansion. For a one-dimensional setting with some limitations on the reference state, the existence of a discrete Hilbert expansion is shown. | en_GB |
dc.identifier.doi | http://doi.org/10.25358/openscience-7480 | |
dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/7494 | |
dc.language.iso | eng | de |
dc.rights | CC-BY-4.0 | * |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.ddc | 510 Mathematik | de_DE |
dc.subject.ddc | 510 Mathematics | en_GB |
dc.title | Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations | en_GB |
dc.type | Zeitschriftenaufsatz | de |
jgu.journal.title | Numerische Mathematik | de |
jgu.journal.volume | 150 | de |
jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | de |
jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
jgu.organisation.number | 7940 | |
jgu.organisation.place | Mainz | |
jgu.organisation.ror | https://ror.org/023b0x485 | |
jgu.pages.end | 103 | de |
jgu.pages.start | 79 | de |
jgu.publisher.doi | 10.1007/s00211-021-01240-5 | de |
jgu.publisher.issn | 0945-3245 | de |
jgu.publisher.name | Springer | de |
jgu.publisher.place | Berlin u.a. | de |
jgu.publisher.year | 2022 | |
jgu.rights.accessrights | openAccess | |
jgu.subject.ddccode | 510 | de |
jgu.type.dinitype | Article | en_GB |
jgu.type.resource | Text | de |
jgu.type.version | Published version | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- asymptotic_properties_of_a_cl-20220729162547501.pdf
- Size:
- 417.04 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 3.57 KB
- Format:
- Item-specific license agreed upon to submission
- Description: