Strukturbildung in Wolken

dc.contributor.advisorSpichtinger, Peter
dc.contributor.authorRosemeier, Juliane
dc.date.accessioned2020-12-03T12:20:20Z
dc.date.available2020-12-03T12:20:20Z
dc.date.issued2020
dc.description.abstractDie Arbeit vereint Elemente aus der Mathematik und Wolkenphysik. Insbesondere widmet sie sich der Untersuchung von Wolkenstrukturen. Es werden Modelle, die warme Wolken und Eiswolken beschreiben, betrachtet. Die Wolkenmodelle werden als Systeme gewöhnlicher Differentialgleichungen formuliert. In der vorliegenden Arbeit wird ein generisches Wolkenschema für warme Wolken formuliert. Die operationellen Modelle, die in IFS und COSMO verwendet werden sowie das Wacker-Schema sind Spezialfälle des generischen Modells und ergeben sich durch eine passende Parameterwahl aus dem generischen Modell. Für die Spezialfälle werden eine Gleichgewichtsanalyse und asymptotische Untersuchungen durchgeführt. Außerdem werden die ODE-Systeme mithilfe von Runge-Kutta Verfahren numerisch berechnet. Diese Untersuchungen geben Aufschluss über die zeitlichen Strukturen der Wolkenmodelle. Zusätzlich werden die Zeitskalen der mikrophysikalischen Wolkenprozesse identifiziert. Durch Ankoppelung von Diffusionstermen an das generische Wolkenmodell gelangt man zu Reaktions-Diffusions-Systemen. Für verschiedene Parameterwahlen im generischen Wolkenschema werden die Reaktions-Diffusions-Systeme auf räumliche Strukturbildung hin untersucht und mit einem Pseudospektralverfahren numerisch gelöst. Außerdem wird ein Eiswolkenmodell beschrieben und untersucht. Um den Einfluss hochfrequenter Forcing-Terme numerisch effizient behandel zu können, werden heterogene Mehrskalenverfahren verwendet, die im Vorfeld beschrieben werden. Die numerischen Untersuchungen gewähren einen Einblick in die zeitlichen Strukturen der Eiswolken.de_DE
dc.description.abstractThe thesis combines elements of cloud physics and mathematics. Especially it is devoted to the investigation of cloud structures. Cloud schemes that describe warm clouds and ice clouds are considered. The cloud schemes are formulated as ordinary differential equations. A generic cloud scheme for warm clouds is formulated. The operational schemes which are incorporated in IFS and COSMO as well as the Wacker scheme are special cases of the generic scheme and can be obtained by an appropriate choice of the parameters in the generic cloud scheme. An analysis of the fixed points and asymptotic investigations are done for the special cases. Additionally the ODE systems are solved numerically with Runge-Kutta methods. These investigations shed light on the temporal structures of the cloud schemes. Additionally the time scales of the micro physical cloud processes are identified. Coupling diffusion terms to the generic cloud scheme leads to reaction- diffusion systems. For special choices of the parameters of the generic cloud scheme the reactiondiffusion systems are investigated for spatial pattern formation and solved numerically with a pseudo-spectral method. Furthermore an ice cloud scheme is described and examined. To treat the impact of highly oscillatory forcing terms efficiently heterogeneous multiscale methods, which are described previously, are applied. The numerical investigations provide insight into the temporal structures of ice clouds.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-5392
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5396
dc.identifier.urnurn:nbn:de:hebis:77-openscience-8d799af8-af38-4b99-ba38-245a586b41b02
dc.language.isogerde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleStrukturbildung in Wolkende_DE
dc.typeDissertationde
jgu.date.accepted2020-09-07
jgu.description.extentxvi, 171 Seitende
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510de
jgu.type.dinitypePhDThesisen_GB
jgu.type.resourceTextde
jgu.type.versionOriginal workde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
rosemeier_juliane-strukturbildun-20201201164053374.pdf
Size:
14.89 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: