Applying univariate vs. multivariate statistics to investigate therapeutic efficacy in (pre)clinical trials : a Monte Carlo simulation study on the example of a controlled preclinical neurotrauma trial

dc.contributor.authorTodorov, Hristo
dc.contributor.authorSearle-White, Emily
dc.contributor.authorGerber, Susanne
dc.date.accessioned2020-06-23T09:12:37Z
dc.date.available2020-06-23T11:12:37Z
dc.date.issued2020
dc.description.abstractBackground Small sample sizes combined with multiple correlated endpoints pose a major challenge in the statistical analysis of preclinical neurotrauma studies. The standard approach of applying univariate tests on individual response variables has the advantage of simplicity of interpretation, but it fails to account for the covariance/correlation in the data. In contrast, multivariate statistical techniques might more adequately capture the multi-dimensional pathophysiological pattern of neurotrauma and therefore provide increased sensitivity to detect treatment effects. Results We systematically evaluated the performance of univariate ANOVA, Welch’s ANOVA and linear mixed effects models versus the multivariate techniques, ANOVA on principal component scores and MANOVA tests by manipulating factors such as sample and effect size, normality and homogeneity of variance in computer simulations. Linear mixed effects models demonstrated the highest power when variance between groups was equal or variance ratio was 1:2. In contrast, Welch’s ANOVA outperformed the remaining methods with extreme variance heterogeneity. However, power only reached acceptable levels of 80% in the case of large simulated effect sizes and at least 20 measurements per group or moderate effects with at least 40 replicates per group. In addition, we evaluated the capacity of the ordination techniques, principal component analysis (PCA), redundancy analysis (RDA), linear discriminant analysis (LDA), and partial least squares discriminant analysis (PLS-DA) to capture patterns of treatment effects without formal hypothesis testing. While LDA suffered from a high false positive rate due to multicollinearity, PCA, RDA, and PLS-DA were robust and PLS-DA outperformed PCA and RDA in capturing a true treatment effect pattern. Conclusions Multivariate tests do not provide an appreciable increase in power compared to univariate techniques to detect group differences in preclinical studies. However, PLS-DA seems to be a useful ordination technique to explore treatment effect patterns without formal hypothesis testing.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizin
dc.identifier.doihttp://doi.org/10.25358/openscience-411
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/413
dc.identifier.urnurn:nbn:de:hebis:77-publ-598739
dc.language.isoeng
dc.rightsCC-BY-4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.titleApplying univariate vs. multivariate statistics to investigate therapeutic efficacy in (pre)clinical trials : a Monte Carlo simulation study on the example of a controlled preclinical neurotrauma trialen_GB
dc.typeZeitschriftenaufsatzde_DE
jgu.journal.issue3
jgu.journal.titlePLOS ONE
jgu.journal.volume15
jgu.organisation.departmentFB 10 Biologie
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7970
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativee0230798
jgu.publisher.doi10.1371/journal.pone.0230798
jgu.publisher.issn1932-6203
jgu.publisher.namePLOS
jgu.publisher.placeSan Francisco, California, US
jgu.publisher.urihttp://dx.doi.org/10.1371/journal.pone.0230798
jgu.publisher.year2020
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode570
jgu.type.dinitypeArticle
jgu.type.resourceText
jgu.type.versionPublished versionen_GB
opus.affiliatedGerber, Susanne
opus.date.accessioned2020-06-23T09:12:37Z
opus.date.available2020-06-23T11:12:37
opus.date.modified2020-06-23T09:16:28Z
opus.identifier.opusid59873
opus.institute.number1012
opus.metadataonlyfalse
opus.organisation.stringFB 10: Biologie: Institut für Entwicklungsbiologie und Neurobiologiede_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
59873.pdf
Size:
3.23 MB
Format:
Adobe Portable Document Format