On the negativity of moduli spaces for polarized manifolds

dc.contributor.authorZuo, Kang
dc.date.accessioned2022-06-27T08:49:08Z
dc.date.available2022-06-27T08:49:08Z
dc.date.issued2021
dc.description.abstractGiven a log base space (Y, S), parameterizing a smooth family of complex projective varieties with semi-ample canonical line bundle, we briefly recall the construction of the deformation Higgs sheaf and the comparison map on (Y, S) made in the work by Viehweg–Zuo. While almost all hyperbolicities in the sense of complex analysis such as Brody, Kobayashi, big Picard and Viehweg hyperbolicities of the base U = Y ∖ S (under some technical assumptions) follow from the negativity of the kernel of the deformation Higgs bundle we pose a conjecture on the topological hyperbolicity on U. In order to study the rigidity problem we then introduce the notions of the length and characteristic varieties of a family f : X → Y, which provide an infinitesimal characterization of products of sub log pairs in (Y, S) and an upper bound for the number of subvarieties appearing as factors in such a product. We formulate a conjecture on a characterization of non-rigid families of canonically polarized varieties.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-7214
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7228
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleOn the negativity of moduli spaces for polarized manifoldsen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleVietnam journal of mathematicsde
jgu.journal.volume49de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end546de
jgu.pages.start527de
jgu.publisher.doi10.1007/s10013-021-00507-6de
jgu.publisher.issn2305-2228de
jgu.publisher.nameSpringerde
jgu.publisher.placeSingaporede
jgu.publisher.year2021
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
on_the_negativity_of_moduli_s-20220624141147553.pdf
Size:
380.47 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: