Understanding and predicting antidepressant response : using animal models to move toward precision psychiatry

dc.contributor.authorHerzog, David P.
dc.contributor.authorBeckmann, Holger
dc.contributor.authorLieb, Klaus
dc.contributor.authorRyu, Soojin
dc.contributor.authorMüller, Marianne B.
dc.date.accessioned2018-12-19T14:31:46Z
dc.date.available2018-12-19T15:31:46Z
dc.date.issued2018
dc.description.abstractThere are two important gaps of knowledge in depression treatment, namely the lack of biomarkers predicting response to antidepressants and the limited knowledge of the molecular mechanisms underlying clinical improvement. However, individually tailored treatment strategies and individualized prescription are greatly needed given the huge socio-economic burden of depression, the latency until clinical improvement can be observed and the response variability to a particular compound. Still, individual patient-level antidepressant treatment outcomes are highly unpredictable. In contrast to other therapeutic areas and despite tremendous efforts during the past years, the genomics era so far has failed to provide biological or genetic predictors of clinical utility for routine use in depression treatment. Specifically, we suggest to 1) shift the focus from the group patterns to individual outcomes, 2) use dimensional classifications such as Research Domain Criteria, 3) envision better planning and improved connections between pre-clinical and clinical studies within translational research units. In contrast to studies in patients, animal models enable both searches for peripheral biosignatures predicting treatment response and in depth analyses of the neurobiological pathways shaping individual antidepressant response in the brain. While there is a considerable number of animal models available aiming at mimicking disease-like conditions such as those seen in depressive disorder, only a limited number of preclinical or truly translational investigations is dedicated to the issue of heterogeneity seen in response to antidepressant treatment. In this mini-review, we provide an overview on the current state of knowledge and propose a framework for successful translational studies into antidepressant treatment response.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizin
dc.identifier.doihttp://doi.org/10.25358/openscience-264
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/266
dc.identifier.urnurn:nbn:de:hebis:77-publ-587206
dc.language.isoeng
dc.rightsCC-BY-4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleUnderstanding and predicting antidepressant response : using animal models to move toward precision psychiatryen_GB
dc.typeZeitschriftenaufsatzde_DE
jgu.journal.titleFrontiers in psychiatry
jgu.journal.volume9
jgu.organisation.departmentFB 04 Medizin
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 512
jgu.publisher.doi10.3389/fpsyt.2018.00512
jgu.publisher.issn1664-0640
jgu.publisher.nameFrontiers Research Foundation
jgu.publisher.placeLausanne
jgu.publisher.urihttp://dx.doi.org/10.3389/fpsyt.2018.00512
jgu.publisher.year2018
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610
jgu.type.dinitypeArticle
jgu.type.resourceText
jgu.type.versionPublished versionen_GB
opus.affiliatedLieb, Klaus
opus.affiliatedRyu, Soojin
opus.affiliatedMüller, Marianne B.
opus.date.accessioned2018-12-19T14:31:46Z
opus.date.available2018-12-19T15:31:46
opus.date.modified2019-01-17T08:05:59Z
opus.identifier.opusid58720
opus.institute.number0432
opus.metadataonlyfalse
opus.organisation.stringFB 04: Medizin: Psychiatrische Klinik und Poliklinikde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
58720.pdf
Size:
1018.51 KB
Format:
Adobe Portable Document Format