Transformer semantic genetic programming for symbolic regression

dc.contributor.authorAnthes, Philipp
dc.contributor.authorSobania, Dominik
dc.contributor.authorRothlauf, Franz
dc.date.accessioned2025-12-15T15:05:27Z
dc.date.issued2025
dc.description.abstractIn standard genetic programming (stdGP), solutions are varied by modifying their syntax, with uncertain effects on their semantics. Geometric-semantic genetic programming (GSGP), a popular variant of GP, effectively searches the semantic solution space using variation operations based on linear combinations, although it results in significantly larger solutions. This paper presents Transformer Semantic Genetic Programming (TSGP), a novel and flexible semantic approach that uses a generative transformer model as search operator. The transformer is trained on synthetic test problems and learns semantic similarities between solutions. Once the model is trained, it can be used to create offspring solutions with high semantic similarity also for unseen and unknown problems. Experiments on several symbolic regression problems show that TSGP generates solutions with comparable or even significantly better prediction quality than stdGP, SLIM_GSGP, DSR, and DAE-GP. Like SLIM_GSGP, TSGP is able to create new solutions that are semantically similar without creating solutions of large size. An analysis of the search dynamic reveals that the solutions generated by TSGP are semantically more similar than the solutions generated by the benchmark approaches allowing a better exploration of the semantic solution space.en
dc.identifier.doihttps://doi.org/10.25358/openscience-13774
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/13795
dc.language.isoeng
dc.rightsCC-BY-4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc330 Wirtschaftde
dc.subject.ddc330 Economicsen
dc.subject.ddc600 Technikde
dc.subject.ddc600 Technology (Applied sciences)en
dc.titleTransformer semantic genetic programming for symbolic regressionen
dc.typeBuchbeitrag
jgu.book.titleGECCO '25 : Proceedings of the Genetic and Evolutionary Computation Conferenceen
jgu.identifier.uuid86297170-edd8-4f45-b71e-02ae88aa76eb
jgu.organisation.departmentFB 03 Rechts- und Wirtschaftswissenschaften
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2300
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end960
jgu.pages.start952
jgu.publisher.doi10.1145/3712256.3726412
jgu.publisher.isbn979-8-4007-1465-8
jgu.publisher.nameACM
jgu.publisher.placeNew York, NY
jgu.publisher.year2025
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode330
jgu.subject.ddccode600
jgu.subject.dfgGeistes- und Sozialwissenschaften
jgu.type.contenttypeMeeting abstract
jgu.type.dinitypeBookParten_GB
jgu.type.resourceText
jgu.type.versionPublished version

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
transformer_semantic_genetic_-20251215160527252395.pdf
Size:
743.18 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
5.14 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections