Tropically constructed Lagrangians in mirror quintic threefolds
dc.contributor.author | Mak, Cheuk Yu | |
dc.contributor.author | Ruddat, Helge | |
dc.date.accessioned | 2020-12-07T11:22:17Z | |
dc.date.available | 2020-12-07T11:22:17Z | |
dc.date.issued | 2020 | |
dc.description.abstract | We use tropical curves and toric degeneration techniques to construct closed embedded Lagrangian rational homology spheres in a lot of Calabi-Yau threefolds. The homology spheres are mirror dual to the holomorphic curves contributing to the Gromov-Witten (GW) invariants. In view of Joyce’s conjecture, these Lagrangians are expected to have special Lagrangian representatives and hence solve a special Lagrangian enumerative problem in Calabi-Yau threefolds. We apply this construction to the tropical curves obtained from the 2,875 lines on the quintic Calabi-Yau threefold. Each admissible tropical curve gives a Lagrangian rational homology sphere in the corresponding mirror quintic threefold and the Joyce’s weight of each of these Lagrangians equals the multiplicity of the corresponding tropical curve. As applications, we show that disjoint curves give pairwise homologous but non-Hamiltonian isotopic Lagrangians and we check in an example that >300 mutually disjoint curves (and hence Lagrangians) arise. Dehn twists along these Lagrangians generate an abelian subgroup of the symplectic mapping class group with that rank. | en_GB |
dc.description.sponsorship | DFG, Open Access-Publizieren Universität Mainz / Universitätsmedizin Mainz | de |
dc.identifier.doi | http://doi.org/10.25358/openscience-5464 | |
dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/5468 | |
dc.language.iso | eng | de |
dc.rights | CC-BY-4.0 | * |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.ddc | 510 Mathematik | de_DE |
dc.subject.ddc | 510 Mathematics | en_GB |
dc.title | Tropically constructed Lagrangians in mirror quintic threefolds | en_GB |
dc.type | Zeitschriftenaufsatz | de |
jgu.journal.title | Forum of mathematics : Sigma | de |
jgu.journal.volume | 8 | de |
jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | de |
jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
jgu.organisation.number | 7940 | |
jgu.organisation.place | Mainz | |
jgu.organisation.ror | https://ror.org/023b0x485 | |
jgu.pages.alternative | e58 | de |
jgu.publisher.doi | 10.1017/fms.2020.54 | |
jgu.publisher.issn | 2050-5094 | de |
jgu.publisher.name | Cambridge Univ. Press | de |
jgu.publisher.place | Cambridge | de |
jgu.publisher.uri | https://doi.org/10.1017/fms.2020.54 | de |
jgu.rights.accessrights | openAccess | |
jgu.subject.ddccode | 510 | de |
jgu.type.dinitype | Article | en_GB |
jgu.type.resource | Text | de |
jgu.type.version | Published version | de |