Moving from the what to the how and where : Bayesian models and predictive processing

dc.contributor.authorHarkness, Dominic L.
dc.contributor.authorKeshava, Ashima
dc.date.accessioned2017-06-01T10:37:03Z
dc.date.available2017-06-01T12:37:03Z
dc.date.issued2017
dc.description.abstractThe general question of our paper concerns the relationship between Bayesian models of cognition and predictive processing, and whether predictive processing can provide explanatory insight over and above Bayesian models. Bayesian models have been gaining influence in neuroscience and the cognitive sciences since they are able to predict human behavior with high accuracy. Models based on a Bayesian optimal observer are fitted on behavioral data. A good fit is hence interpreted as human subjects “behaving” in a Bayes’ optimal fashion. However, these models are performance-oriented and do not specify which processes could give rise to the observed behavior. Here, David Marr’s (Marr 1982) levels of analysis can help understand the relationship between performance- and process-oriented models or explanations. Bayesian models are situated at the computational level since they specify what the system (in this case the brain) does and why it does it in this manner. Although Bayesian models can constrain the search space for hypotheses at the algorithmic level, they do not provide a precise solution about how a system realizes the observed behavior. Here predictive processing can shed more light on the underlying principles. Predictive processing provides a unifying functional theory of cognition and can thus i) provide an answer at the algorithmic level by answering how the brain realizes cognition, ii) can aid in the interpretation of neurophysiological findings at the implementational level.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-639
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/641
dc.identifier.urnurn:nbn:de:hebis:77-publ-566583
dc.language.isoeng
dc.rightsCC-BY-ND-4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc100 Philosophiede_DE
dc.subject.ddc100 Philosophyen_GB
dc.titleMoving from the what to the how and where : Bayesian models and predictive processingen_GB
dc.typeBuchbeitragde_DE
jgu.book.editorMetzinger, Thomas
jgu.book.titlePhilosophy and predictive processing
jgu.organisation.departmentFB 05 Philosophie und Philologie
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7920
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end263
jgu.pages.start254
jgu.publisher.doi10.15502/9783958573178
jgu.publisher.nameMIND Group
jgu.publisher.placeFrankfurt am Main
jgu.publisher.urihttp://dx.doi.org/10.15502/9783958573178
jgu.publisher.year2017
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode100
jgu.type.dinitypeBookPart
jgu.type.resourceText
jgu.type.versionPublished versionen_GB
opus.date.accessioned2017-06-01T10:37:03Z
opus.date.available2017-06-01T12:37:03
opus.date.modified2017-06-02T08:27:01Z
opus.identifier.opusid56658
opus.institute.number0508
opus.metadataonlyfalse
opus.organisation.stringFB 05: Philosophie und Philologie: Philosophisches Seminarde_DE
opus.relation.ispartofcollectionPhilosophy and predictive processingde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
56658.pdf
Size:
297.23 KB
Format:
Adobe Portable Document Format