Bone scaffolds based on degradable vaterite/PEG-composite microgels

dc.contributor.authorStengelin, Elena
dc.contributor.authorKuzmina, Alena
dc.contributor.authorBeltramo, Guillermo L.
dc.contributor.authorKoziol, Martha F.
dc.contributor.authorBesch, Laura
dc.contributor.authorSchröder, Romina
dc.contributor.authorUnger, Ronald E.
dc.contributor.authorTremel, Wolfgang
dc.contributor.authorSeiffert, Sebastian
dc.date.accessioned2021-08-09T09:08:57Z
dc.date.available2021-08-09T09:08:57Z
dc.date.issued2020
dc.description.abstractVaterite, a metastable modification of calcium carbonate, embedded in a flexible microgel packaging with adjustable mechanical properties, functionality, and biocompatibility, provides a powerful scaffolding for bone tissue regeneration, as it is easily convertible to bone-like hydroxyapatite (HA). In this study, the synthesis and physical analysis of a packaging material to encapsulate vaterite particles and osteoblast cells into monodisperse, sub-millimeter-sized microgels, is described whereby a systematic approach is used to tailor the microgel properties. The size and shape of the microgels is controlled via droplet-based microfluidics. Key requirements for the polymer system, such as absence of cytotoxicity as well as biocompatibility and biodegradability, are accomplished with functionalized poly(ethylene glycol) (PEG), which reacts in a cytocompatible thiol–ene Michael addition. On a mesoscopic level, the microgel stiffness and gelation times are adjusted to obtain high cellular viabilities. The co-encapsulation of living cells provides i) an in vitro platform for the study of cellular metabolic processes which can be applied to bone formation and ii) an in vitro foundation for novel tissue-regenerative therapies. Finally, the degradability of the microgels at physiological conditions caused by hydrolysis-sensitive ester groups in the polymer network is examined.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-6249
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/6259
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc540 Chemiede_DE
dc.subject.ddc540 Chemistry and allied sciencesen_GB
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.titleBone scaffolds based on degradable vaterite/PEG-composite microgelsen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue11de
jgu.journal.titleAdvanced healthcare materialsde
jgu.journal.volume9de
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7950
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative1901820de
jgu.publisher.doi10.1002/adhm.201901820
jgu.publisher.issn2192-2659de
jgu.publisher.nameWiley-VCHde
jgu.publisher.placeWeinheimde
jgu.publisher.urihttps://doi.org/10.1002/adhm.201901820de
jgu.publisher.year2020
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode540de
jgu.subject.ddccode570de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
stengelin_elena-bone_scaffolds-20210804000148620.pdf
Size:
3.97 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: