Geometric characterisation of disease modules

dc.contributor.authorHärtner, Franziska
dc.contributor.authorAndrade, Miguel
dc.contributor.authorAlanis-Lobato, Gregorio
dc.date.accessioned2018-07-23T10:16:24Z
dc.date.available2018-07-23T12:16:24Z
dc.date.issued2018
dc.description.abstractThere is an increasing accumulation of evidence supporting the existence of a hyperbolic geometry underlying the network representation of complex systems. In particular, it has been shown that the latent geometry of the human protein network (hPIN) captures biologically relevant information, leading to a meaningful visual representation of protein-protein interactions and translating challenging systems biology problems into measuring distances between proteins. Moreover, proteins can efficiently communicate with each other, without global knowledge of the hPIN structure, via a greedy routing (GR) process in which hyperbolic distances guide biological signals from source to target proteins. It is thanks to this effective information routing throughout the hPIN that the cell operates, communicates with other cells and reacts to environmental changes. As a result, the malfunction of one or a few members of this intricate system can disturb its dynamics and derive in disease phenotypes. In fact, it is known that the proteins associated with a single disease agglomerate non-randomly in the same region of the hPIN, forming one or several connected components known as the disease module (DM). Here, we present a geometric characterisation of DMs. First, we found that DM positions on the two-dimensional hyperbolic plane reflect their fragmentation and functional heterogeneity, rendering an informative picture of the cellular processes that the disease is affecting. Second, we used a distance-based dissimilarity measure to cluster DMs with shared clinical features. Finally, we took advantage of the GR strategy to study how defective proteins affect the transduction of signals throughout the hPIN.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizin
dc.identifier.doihttp://doi.org/10.25358/openscience-385
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/387
dc.language.isoeng
dc.rightsCC-BY-4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.titleGeometric characterisation of disease modulesen_GB
dc.typeZeitschriftenaufsatzde_DE
jgu.journal.issue1
jgu.journal.titleApplied network science
jgu.journal.volume3
jgu.notes.publicAndrade, Miguel veröffentlicht unter: Andrade-Navarro, Miguel A.de_DE
jgu.organisation.departmentFB 10 Biologie
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7970
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 10
jgu.publisher.doi10.1007/s41109-018-0066-3
jgu.publisher.issn2364-8228
jgu.publisher.nameSpringer International Publishing
jgu.publisher.placeCham
jgu.publisher.urihttp://dx.doi.org/10.1007/s41109-018-0066-3
jgu.publisher.year2018
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode570
jgu.type.dinitypeArticle
jgu.type.resourceText
jgu.type.versionPublished versionen_GB
opus.affiliatedAndrade, Miguel
opus.affiliatedAlanis-Lobato, Gregorio
opus.date.accessioned2018-07-23T10:16:24Z
opus.date.available2018-07-23T12:16:24
opus.date.modified2018-07-23T10:30:57Z
opus.identifier.opusid58368
opus.institute.number1011
opus.metadataonlyfalse
opus.organisation.stringFB 10: Biologie: Institut für Organismische und Molekulare Evolutionsbiologiede_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
58368.pdf
Size:
1023.97 KB
Format:
Adobe Portable Document Format