Harnessing orbital Hall effect in spin-orbit torque MRAM

dc.contributor.authorGupta, Rahul
dc.contributor.authorBouard, Chloé
dc.contributor.authorKammerbauer, Fabian
dc.contributor.authorLedesma-Martin, J. Omar
dc.contributor.authorBose, Arnab
dc.contributor.authorKononenko, Iryna
dc.contributor.authorMartin, Sylvain
dc.contributor.authorUsé, Perrine
dc.contributor.authorJakob, Gerhard
dc.contributor.authorDrouard, Marc
dc.contributor.authorKläui, Mathias
dc.date.accessioned2025-08-12T09:17:47Z
dc.date.available2025-08-12T09:17:47Z
dc.date.issued2025
dc.description.abstractSpin-Orbit Torque (SOT) Magnetic Random-Access Memory (MRAM) devices offer improved power efficiency, nonvolatility, and performance compared to static RAM, making them ideal, for instance, for cache memory applications. Efficient magnetization switching, long data retention, and high-density integration in SOT MRAM require ferromagnets (FM) with perpendicular magnetic anisotropy (PMA) combined with large torques enhanced by Orbital Hall Effect (OHE). We have engineered a PMA [Co/Ni]3 FM on selected OHE layers (Ru, Nb, Cr) and investigated the potential of theoretically predicted larger orbital Hall conductivity (OHC) to quantify the torque and switching current in OHE/[Co/Ni]3 stacks. Our results demonstrate a ~30% enhancement in damping-like torque efficiency with a positive sign for the Ru OHE layer compared to a pure Pt layer, accompanied by a ~20% reduction in switching current for Ru compared to pure Pt across more than 250 devices, leading to more than a 60% reduction in switching power. These findings validate the application of Ru in devices relevant to industrial contexts, supporting theoretical predictions regarding its superior OHC. This investigation highlights the potential of enhanced orbital torques to improve the performance of orbital-assisted SOT-MRAM, paving the way for next-generation memory technology.en
dc.description.sponsorship(European Research Council|856538, Deutsche Forschungsgemeinschaft (German Research Foundation)|358671374)
dc.identifier.doihttps://doi.org/10.25358/openscience-11597
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/11618
dc.language.isoeng
dc.rightsCC-BY-4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 Physikde
dc.subject.ddc530 Physicsen
dc.titleHarnessing orbital Hall effect in spin-orbit torque MRAMen
dc.typeZeitschriftenaufsatz
elements.depositor.primary-group-descriptorFachbereich Physik, Mathematik und Informatik
elements.object.id180604
elements.object.typejournal-article
jgu.journal.titleNature Communications
jgu.journal.volume16
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative130
jgu.publisher.doi10.1038/s41467-024-55437-x
jgu.publisher.eissn2041-1723
jgu.publisher.licenceCC BY
jgu.publisher.nameSpringer Nature
jgu.publisher.placeLondon
jgu.publisher.year2025
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530
jgu.subject.dfgNaturwissenschaften
jgu.type.dinitypeArticleen_GB
jgu.type.resourceText
jgu.type.versionPublished version

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
harnessing_orbital_hall_effec-2025081211174791950.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description:
Published version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
5.1 KB
Format:
Plain Text
Description:

Collections