Lang-Vojta's conjecture for the moduli of Fano threefolds of Picard rank 1, index 1 and degree 4

dc.contributor.authorLicht, Philipp
dc.date.accessioned2023-01-05T11:20:48Z
dc.date.available2023-01-05T11:20:48Z
dc.date.issued2023
dc.description.abstractWe verify Lang-Vojta's conjecture for the moduli of Fano threefolds of Picard rank 1, index 1 and degree 4. This leads us to studying the infinitesimal Torelli problem for quasi-smooth weighted complete intersections. We give a proof for the fact that the infinitesimal Torelli map can be described as a multiplication in the associated Jacobi ring. We also study the geometry of the moduli stack and show that it is stratified via the two types of such Fano threefolds given by Iskovskikh's classification. Furthermore, we work on the persistence conjecture. We generalize a criterion that says that geometric hyperbolicity implies the persistence of arithmetic hyperbolicity to the case of algebraic stacks.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-8507
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8523
dc.identifier.urnurn:nbn:de:hebis:77-openscience-556ef5fe-5dc3-48d2-ae25-4d21ad3064905
dc.language.isoengde
dc.rightsInC-1.0*
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/*
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleLang-Vojta's conjecture for the moduli of Fano threefolds of Picard rank 1, index 1 and degree 4de_DE
dc.typeDissertationde
jgu.date.accepted2022-11-11
jgu.description.extentvii, 63 Seitende
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510de
jgu.type.dinitypePhDThesisen_GB
jgu.type.resourceTextde
jgu.type.versionOriginal workde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
langvojtas_conjecture_for_the-20221216120515774.pdf
Size:
512.58 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: